Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Materials

Ni(OH)₂-Modified SrTiO₃ for Enhanced Photocatalytic Hydrogen Evolution Reaction

Wenqian Chen^{*a,c,#*}, Meiqi Zhang^{*a,#*}, Shaohua Yang^{*a*}, Jinyi Chen^{*a*}, Liang Tang^{*a,b,**}

^a School of Environmental and Chemical Engineering, Shanghai University, Shanghai

200444, PR China

^b Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of

Education, Shanghai 200444, PR China

^c Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road,

Shanghai 201800, PR China

* Corresponding author. E-mail addresses: tang1liang@shu.edu.cn (L. Tang)

[#] Equal contribution

Samples	R	Ni(OH) ₂ (mol%)	S _{BET}	Pore volume		
		(ICP-OES)	(m²g-1)	(cm ³ g ¹)		
NO	0	0	3.2844	0.0218		
N0.5	0.5	0.376	3.7696	0.0189		
N5	5	4.73	14.8100	0.0512		
N10	10	8.05	46.8466	0.1099		
N20	20	18.96	52.6024	0.1245		
N25	25	23.68	67.2800	0.1678		
N100	100	100	357.7338	0.6153		

Table. S1. Physicochemical properties of $SrTiO_3$, $Ni(OH)_2/SrTiO_3$ and $Ni(OH)_2$ samples.

Fig. S1. XRD patterns of sample N100 and Ni(OH)₂ (JCPDS No.14-0117).

Fig. S2. UV–vis diffuse reflectance spectra of N20 and N20* (after 3 hours of hydrogen production).

Fig. S3. Nitrogen adsorption-desorption isotherms of samples N0, N0.5, N5, N10, N20, N25, N100.

Fig. S4. The XPS survey spectrum of N20.

The XPS survey spectrum of N20 indicates that Sr, Ti, Ni, O, and C elements are observed and their corresponding photoelectron peaks appear at the binding energies of 130 eV (Sr 3d), 458 eV (Ti 2p) 856 eV (Ni 2p), 531 eV (O 1s), and 286 eV (C1s), respectively. The carbon peak is attributed to the residual carbon from the sample and adventitious hydrocarbon from the XPS instrument itself.

Table	S2	Comparative	results	of	hydrogen	production	rate	from	the	photocatalytic	water

Photocatalyst	Scavenger	Reaction conditions	Light source	H ₂ production	Reference s
20 mol.% Ni(OH) ₂ / SrTiO ₃	MeOH	0.025 g of photocatalyst, 40 ml of 25 vol.% aqueous MeOH solution	300 W UV Xe lamp	1461.7 (μmolh ⁻¹ g ⁻	This work
0.5 wt.%Cu− SrTiO ₃	MeOH	0.15 g of photocatalyst, 38mlMeOH and 342ml water. $H_2PtCl_6 \cdot 6H_2O$ (183 µl, c = 62.6 mmol L^{-1})	300 W Hg lamp	800 (μmolh ⁻¹ g ⁻ ¹)	1

splitting over	[,] various Si	TiO ₃ -based	photocatalysts.
----------------	-------------------------	-------------------------	-----------------

SrTiO ₃ -TiO ₂	MeOH	-	300 W Xe lamp	314.9 (μmolcm ⁻² h ⁻	2
Pt (0.5 wt.%) SrTiO₃: Rh (1 mol%)	MeOH	0.05 g of photocatalyst, 50ml of 20 vol.% aqueous MeOH solution	300 W Xe lamp (λ > 420 nm)	962 (μmol h ⁻¹ g ⁻ ¹)	3
1% Rh-doped 0.1 wt.% Pt- loaded SrTiO ₃	МеОН	0.3 g of photocatalyst, 150 ml of 10 vol.% aqueous MeOH solution	300 W Xe lamp with cutoff filter (λ > 440 nm)	117 (μmolh ⁻ ¹ g cat ⁻¹)	4
4 mol% Cr-, 4 mol% Ta- doped 1 wt.% Pt loaded SrTiO ₃	MeOH	1 g of photocatalyst, 310 ml of 6.5 vol.% aqueous MeOH solution	300 W Xe lamp with cutoff filter (λ > 440 nm)	70 (µmolh ⁻ ¹ g cat ⁻¹)	5
CdS/SrTiO ₃ 3wt%	MeOH	-	310 W/m², XHA500	169 (μmol h ⁻¹ g ⁻ ¹)	6
950℃, 1% Zn doped 0.2% (w%) CoO/SrTiO ₃	Na ₂ CO ₃	0.1 g of photocatalyst , 800 ml of aqueous Na ₂ CO ₃ solution	400 W Hg lamp	315 (μmol h ⁻¹ g ⁻ ¹)	7
1 wt.% Au- loaded mesoporous assembled SrTiO ₃	СНООН	0.2 g of photocatalyst, 200 ml of 2.5 vol.% aqueous CHOOH solution	176 W Hg lamp	647 (μmol h ⁻ ¹gcat ⁻¹)	8

Fig. S5. XRD patterns of samples N20 and N20* (after 3 hours of hydrogen production)

The XRD patterns of the sample after 3 hours of photocatalytic hydrogen production and N20 (before the reaction) to further prove the stability of the sample.

Reference

1. S. Banakhojasteh, S. Beckert and R. Gläser, J. Photoch. Photobio. A, 2018, 366, 48-54.

2. Z. Wu, Y. Su, J. Yu, W. Xiao, L. Sun and C. Lin, Int. J. Hydrogen Energy, 2015, 40, 9704-9712.

3. P. Shen, J. C. Lofaro, W. R. Woerner, M. G. White, D. Su and A. Orlov, Chem. Eng. J., 2013, **223**, 200-208.

4. T. Ishii, H. Kato and A. Kudo, J. Photoch. Photobio. A, 2004, 163, 181-186.

5. R. Konta, T. Ishii, H. Kato, A. Kudo, J. Physl. Chem. B, 2004, 108, 8992-8995.

6. E.-C. Su, J.-M. Yeh, B.-S. Huang, J.-T. Lee and M.-Y. Wey, Sol. Energy, 2017, 147, 240-247.

7. G.-y. Wang, Y. Qin, J. Cheng and Y.-j. Wang, J. Fuel Chem. & Technol., 2010, **38**, 502-507.

8. T. Puangpetch, S. Chavadej and T. Sreethawong, Energ. Convers. Manage., 2011, **52**, 2256-2261.