Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Copper(I) halide polymers derived from tris[2-(pyridin-2-yl)ethyl]phosphine: halogentunable colorful luminescence spanning from deep blue to green

Alexander V. Artem'ev,*^a Andrey Yu. Baranov,^a Mariana I. Rakhmanova,^a Svetlana F. Malysheva,^b Denis G. Samsonenko^a

^a Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation ^b A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of Russian Academy of Sciences, Russian Federation

*Author for correspondence: chemisufarm@yandex.ru (Alexander V. Artem'ev)

Table of Contents

Pages

- S2–3 §1. X-Ray crystallography
- S3-4 §2. FT-IR spectra
- S4–6 §3. Computational details
- S6–7 §7. Photophysical measurements

Single crystals of **3**·0.5CH₃CN were grown by vapor diffusion of diethyl ether into an acetonitrile solution at room temperature. Diffraction data were obtained on an automated Agilent Xcalibur diffractometer equipped with an area AtlasS2 detector (graphite monochromator, λ (MoK α) = 0.71073 Å, ω -scans). Integration, absorption correction, and determination of unit cell parameters were performed using the CrysAlisPro program package.^[1] The structures were solved by dual space algorithm (SHELXT^[2]) and refined by the full-matrix least squares technique (SHELXL^[3]) in the anisotropic approximation (except hydrogen atoms). Positions of hydrogen atoms were calculated geometrically and refined in the riding model.

The crystallographic data and details of the structure refinements are summarized in Table S1. CCDC 1982609 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center at http://www.ccdc.cam.ac.uk/data_request/cif.

CCDC number	1982609		
Chemical formula	$C_{22}H_{25.5}Cu_2I_2N_{3.5}P$		
Mr	750.81		
Crystal system, space group	Triclinic, <i>P</i> [−] 1		
Temperature (K)	130		
a, b, c (Å)	9.4902(3), 12.2629(5), 12.5114(5)		
<i>α, β,</i> γ (°)	113.970(4), 102.843(3), 97.774(3)		
V (Å ³)	1254.92(9)		
Ζ	2		
μ (mm ⁻¹)	4.23		
Crystal size (mm)	0.25 × 0.10 × 0.04		
T _{min} , T _{max}	0.748, 1.000		
No. of measured, independent	12408, 6409, 5532		
and observed $[I > 2\sigma(I)]$ reflections			
R _{int}	0.023		
(sin θ/λ) _{max} (Å ⁻¹)	0.711		
$R[F^2 > 2s(F^2)], wR(F^2), S$	0.025, 0.053, 1.01		
No. of reflections	6409		
No. of parameters	290		
$\Delta angle_{max},\Delta angle_{min}$ (e Å ⁻³)	0.65, –0.58		

Table S1. Crystal data and structure refinement for 3.0.5CH₃CN.

^[1] CrysAlisPro 1.171.38.46, *Rigaku Oxford Diffraction*, 2015.

^[2] G. M. Sheldrick *Acta Crystallogr.*, **2015**, *A71*, 3–8.

^[3] G. M. Sheldrick, *Acta Crystallogr.*, **2015**, *C71*, 3–8.

Figure S1. Experimental XRPD patterns for 1-3 compared with the simulated one for $3\cdot0.5$ CH₃CN.

§2. FT-IR spectra

Figure S2. FT-IR spectra of 1-3 showed in the 400–3200 cm⁻¹ region.

Figure S3. FT-IR spectra of 1–3 showed in the fingerprint region.

§3. Computational details

Figure S4. Five lowest unoccupied and 12 highest occupied MOs (iso-value = 0.04) for the S₀ state of the model {Cu₄I₄L₂} fragment of CP **3** calculated at the B3LYP/LANL2DZ/6-31+G(d,p) level.

Table S2. The main singlet-singlet electronic transitions (f > 0.004) in the absorption spectrum of **3** derived from TD-DFT calculations of the model {Cu₄I₄L₂} fragment at B3LYP/LANL2DZ/6-31+G(d,p) level (S₀ state, gas).

E, eV	λ <i>,</i> nm	$f^{(a)}$	Transitions (main contributions)	Character ^(b)
2.94	421.0	0.0159	HOMO–1 → LUMO (19.8%) HOMO → LUMO (75.7%)	(M+X)LCT
2.98	415.6	0.0108	HOMO–1 → LUMO (68.7%) HOMO → LUMO (20.6%)	(M+X)LCT
3.27	379.0	0.0080	HOMO–1 → LUMO (59.4%) HOMO–2 → LUMO (20.8%)	(M+X)LCT
3.32	373.7	0.0420	HOMO → LUMO+2 (36.2%) HOMO → LUMO+7 (25.8%)	(M+X)LCT + (M+I)MCT

3.38	366.5	0.0239	HOMO–1 → LUMO (11.7%) HOMO–1 → LUMO+2 (33.3%) HOMO–1 → LUMO+7 (22.4%) HOMO → LUMO+2 (14.7%)	(M+X)LCT + (M+I)MCT
3.44	360.5	0.0093	HOMO–3 → LUMO (16.9%) HOMO–2 → LUMO+1 (56.4%)	(M+X)LCT
3.48	356.3	0.0080	HOMO–6 → LUMO (14.5%) HOMO–4 → LUMO+1 (74.7%)	(M+X)LCT
3.57	346.8	0.0133	HOMO–5 → LUMO+1 (74.8%)	(M+X)LCT
3.65	339.9	0.0089	HOMO–6 → LUMO (23.5%) HOMO–1 → LUMO+2 (14.2%) HOMO → LUMO+9 (16.2%)	(M+X)LCT
3.72	333.2	0.0449	HOMO–3 → LUMO+2 (38.0%) HOMO–3 → LUMO+7 (24.7%)	(M+X)LCT + (M+I)MCT
3.78	328.2	0.0146	HOMO–6 → LUMO (15.3%) HOMO–2 → LUMO+3 (16.8%) HOMO–2 → LUMO+6 (14.1%)	(M+X)LCT + (M+I)MCT
3.84	322.8	0.0042	HOMO–7 → LUMO+1 (71.6%)	(M+X)LCT
4.00	309.6	0.0053	HOMO–3 → LUMO+5 (67.0%)	(M+X)LCT
4.02	308.6	0.0081	HOMO−1 → LUMO+11 (21.9%) HOMO → LUMO+12 (48.8%)	(M+X)LCT
4.03	307.6	0.0046	HOMO–4 → LUMO+4 (51.7%)	(M+X)LCT
4.05	306.3	0.0053	HOMO–4 → LUMO+3 (24.8%) HOMO–4 → LUMO+4 (23.5%) HOMO–4 → LUMO+6 (30.0%)	(M+X)LCT
4.05	305.9	0.0192	HOMO–6 → LUMO+7 (19.5%) HOMO–4 → LUMO+3 (16.2%)	(M+X)LCT + (M+I)MCT
4.07	304.5	0.0047	HOMO–1 → LUMO+12 (87.5%)	(M+X)LCT

^(a) Oscillator strength;

^(b) (M+X)LCT and (M+I)MCT denoted to the transitions of (copper+iodine)-to-ligand charge transfer and (copper+iodine)-to-copper charge transfer nature, respectively.

§4. Photophysical measurements

Figure S5. The emission spectra of 1–3 recorded at different excitations (300 K).

Figure S6. Temperature-dependent excitation spectra of **1** (λ_{em} = 520 nm).

Figure S7. Temperature-dependent excitation spectra of **2** (λ_{em} = 490 nm).

Figure S8. Temperature-dependent excitation spectra of **3** (λ_{em} = 450 nm).