Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

for

Ultrafast synthesis of magnetic hollow carbon nanospheres for the

adsorption of quinoline from coking wastewater

Yan Cui^{a,b}, Weiwei Kang^a, Lei Qin^{a,c}, Jinghong Ma^b, Xuguang Liu^{a,d,*},

Yongzhen Yang^{a,*}

^a Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan

University of Technology), Ministry of Education, Taiyuan 030024, China

^b College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan

030024, China

^c Department of Chemical Engineering, Monash University, Australia

^d Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China

*Corresponding authors.

E-mail addresses: liuxuguang@tyut.edu.cn (X. Liu), yyztyut@126.com (Y. Yang).

Supplementary equations.

The adsorption capacity q_t (mg g⁻¹) and q_e (mg g⁻¹) were determined, the equations are as follows:

$$q_t = V(C_0 - C_t)/m \tag{S-1}$$

$$q_e = V(C_0 - C_e)/m \tag{S-2}$$

where $C_0 \text{ (mg L}^{-1})$, $C_t \text{ (mg L}^{-1})$ and $C_e \text{ (mg L}^{-1})$ are the concentrations of Q solution at time 0, time *t* and equilibrium, respectively. V(L) represents the volume of Q solution; m (g) is the weight of adsorbent.

Kinetic models:

The pseudo-first-order kinetic model (Eq. (S3)) and pseudo-second-order kinetic model (Eq. (S4)) can be described by the following equations:

$$\ln\left(q_e - q_t\right) = \ln q_e - k_1 t \tag{S-3}$$

$$t/q_t = 1/(k_2 q_e^2) + t/q_e \tag{S-4}$$

where $q_t \pmod{g^{-1}}$ and $q_e \pmod{g^{-1}}$ are the amounts of quinoline adsorbed on MHCNSs at time *t* (min) and at equilibrium, respectively. $k_1 \pmod{1}$ represents the pseudo-firstorder kinetic rate constant; $k_2 \pmod{g \operatorname{mg}^{-1} \min^{-1}}$ represents the pseudo-second-order kinetic rate constant.

Isotherm models:

The Langmuir model (Eq. (S5)), Freundlich model (Eq. (S6)) and Langmuir– Freundlich model (Eq. (S7)) can be described by the following equations:

$$C_e/q_e = C_e/q_m + 1/(q_m K_L)$$
 (S-5)

$$\ln q_e = \ln C_e / n + \ln K_F \tag{S-6}$$

$$q_e/q_m = (K_{L-F}C_e)^n / (1 + (K_{L-F}C_e)^n)$$
(S-7)

where $C_e \text{ (mg L}^{-1}\text{)}$ represents the equilibrium concentration of quinoline in solution. $q_e \text{ (mg g}^{-1}\text{)}$ represents the adsorption capacity of quinoline on MHCNSs at equilibrium. $q_m \text{ (mg g}^{-1}\text{)}$ is the maximum adsorption capacity. K_L is Langmuir constant; K_F is Freundlich constant; K_{L-F} is Langmuir–Freundlich constant. n represents the empirical constant.

Thermodynamic parameters:

The thermodynamic parameters including standard enthalpy ΔH^{θ} , standard entropy ΔS^{θ} and standard Gibbs free energy ΔG^{θ} are acquired by the following equations:

$$\Delta G^{\theta} = -RT \ln K_c \tag{S-8}$$

$$\ln K_c = \Delta S^{\theta} / R - \Delta H^{\theta} / (RT) \tag{S-9}$$

where K_c is the thermodynamic equilibrium constant, obtained by Langmuir equation. T (K) and R (J mol⁻¹ K⁻¹) represent the absolute temperature and ideal gas constant, respectively. ΔH^{θ} and ΔS^{θ} can be achieved from the linear plots of ln K_c versus 1/T.

Supplementary figures.

Figure S1. Standard curve of quinoline in water.

Figure S2. Photograph of coking wastewater after biological pretreatment.

Figure S3. (a–e) FESEM images and (a'–e') TEM images of CNSs with different reaction conditions: (a, a') CNSs-1, (b, b') CNSs-2, (c, c') CNSs-3, (d, d') CNSs-4 and (e, e') CNSs-5.

Figure S4. Molecular diameter of quinoline.

Figure S5. Regeneration tests of MHCNSs.

Figure S6. FESEM image of the regenerated MHCNSs.

Supplementary tables.

Adsorbent	$\frac{S_{BET}}{(m^2 g^{-1})}$	S_{micro} (m ² g ⁻¹)	S_{meso} (m ² g ⁻¹)	V_{total} (cm ³ g ⁻¹)	V _{micro} (cm ³ g ⁻¹)	D _p (nm)	
MHCNSs	386.26	309.60	76.66	0.53	0.16	1.61	

Table S1. Textural properties of MHCNSs.

Table S2. Kinetic parameters on quinoline adsorption.

			Pseudo-first-order				Pseudo-second-order			
	T (K)	$q_{\rm e,exp}$ (mg g ⁻¹)	$q_{\rm e,cal}$ (mg g ⁻¹)	<i>k</i> ₁ (min ⁻¹)	R ²	($q_{\rm e,cal}$ (mg g ⁻¹)	<i>k</i> ₂ (g mg ⁻¹ min ⁻¹)	R ²	
MHCNSs	288	94.48	90.30	0.2375	0.9568		96.78	0.0041	0.9913	
	298	85.19	80.49	0.2522	0.9704		86.95	0.0046	0.9926	
	308	78.21	74.01	0.1735	0.9510		80.24	0.0034	0.9924	

Table S3. Comparison of different adsorbents for quinoline removal from water.

Adsorbent	Adsorbent synthesis time	Adsorption capacity (mg g ⁻¹)	Equilibrium time (min)	Reference	
Granular activated carbon	_	160.03	500	[14]	
Bagasse fly ash	_	31.18	500	[14]	
Bamboo charcoal	5–8 d	32.50	1440	[15]	
Magnetic carbon nanospheres	24 h	99.43	115	[49]	
Modified agricultural waste 1 h		35.03	180	[56]	
MHCNSs	80 s	155.23	65	This work	

		Langmuir				Freundlich			Langmuir–Freundlich			
	Т(К)	$q_{ m m}$ (mg g ⁻¹)	K _L	R ²	п	$K_{ m F}$	R ²	$q_{\rm m}$ (mg g ⁻¹)	K _{L-F}	п	R ²	
	288	145.46	0.87	0.9523	8.26	83.12	0.8274	153.43	0.87	0.70	0.9812	
MHCNSs	298	151.50	0.17	0.9946	5.46	58.99	0.8769	156.76	0.21	0.85	0.9995	
	308	155.43	0.08	0.9821	4.26	43.76	0.8376	148.66	0.05	1.23	0.9852	

Table S4. Isotherm parameters on quinoline adsorption.

Table S5. Thermodynamic parameters on quinoline adsorption.

	T(V)	$\Delta G^{ heta}$	ΔH^{0}	ΔS^{θ}	
	<i>I</i> (K)	(kJ mol ⁻¹)	(kJ mol ⁻¹)	(J mol ⁻¹ K ⁻¹)	
	288	-37.45		-176.85	
MHCNSs	298	-34.73	-88.08		
	308	-33.95			

References

- J. Du, L. Liu, Y.F. Yu, Y. Zhang and A.B. Chen, *Chinese Chemical Letters*, 2019, 30, 1423– 1427.
- C. Dong, Z.H. Li, L. Zhang, G.H. Li, H.C. Yao, J.S. Wang, Q.C. Liu and Z.J. Li, *Diamond and Related Materials*, 2019, 92, 32–40.
- 3. Z.S. Wang and F.S. Li, Materials Letters, 2008, 63, 58-60.