Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Materials

Sensing the polar molecules MH₃ (M=N, P, or As) with Janus NbTeSe monolayer

Xiaoyong Yang ^{*a,b*}, Deobrat Singh^{**a*} Zhitong Xu^b, and Rajeev Ahuja^{**a,c*}

^a Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden

^bSouthwest University of Science and Technology, Mianyang 621010, China ^c Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden

**Corresponding author: <u>deobrat.singh@physics.uu.se</u>; <u>rajeev.ahuja@physics.uu.se</u> Fax: +46 184713524 Tel: +46 728772897*

Figure S1. The structure of Janus NbSeTe monolayer from (a) top and (b) side views with possible adsorption positions for molecule NH₃, PH₃ and AsH₃, respectively.

Figure S2. Calculated phonon band dispersion of Janus NbSeTe monolayer.

Table S1. The bond lengths and angles for NH₃, PH₃ and AsH₃ gas molecules before and after adsorbed on Janus NbTeSe monolayer, respectively, corresponding to the adsorption energies in Figure S1.

Туре		Bond length of the molecule (Å)			Angle of the molecule (°)		
		NH3	PH ₃	AsH ₃	NH3	PH ₃	AsH ₃
Pristine		1.028	1.433	1.539	106.046	92.328	90.911
	T-Se	1.027	1.434	1.541	106.906	92.559	91.218
	T-Te	1.028	1.433	1.541	105.726	91.851	90.621
	T _{Nb} -Se	1.028	1.434	1.541	106.375	92.303	90.828
Upward	T _{Nb} -Te	1.028	1.434	1.540	106.132	92.058	90.659
orientation	H-Se	1.027	1.432	1.541	106.806	92.486	91.078
	H-Te	1.028	1.434	1.540	106.252	92.058	90.659
	B-Se	1.027	1.433	1.540	106.655	92.535	91.239
	B-Te	1.028	1.433	1.541	105.924	91.927	90.628
	T-Se	1.025	1.432	1.540	106.516	93.170	91.400
	T-Te	1.029	1.421	1.525	106.693	93.059	91.358
	T _{Nb} -Se	1.027	1.431	1.540	106.754	93.021	91.373
Downward	T _{Nb} -Te	1.027	1.432	1.540	106.804	92.939	91.277
orientation	H-Se	1.026	1.431	1.540	107.335	93.092	92.128
	H-Te	1.027	1.432	1.541	107.264	93.656	91.967
	B-Se	1.026	1.431	1.540	107.655	93.014	91.235
	B-Te	1.018	1.432	1.540	106.335	92.753	91.394

Figure S3. The electrostatic potential ϕ (eV) of Se surface (solid lines) and Te (dash lines) surface of the gas molecule NH₃, PH₃ and AsH₃ adsorption on Se-layer and Te-layer. In comparison to pure Janus NbTeSe monolayer. The corresponding electrostatic potential values are denoted with the different colors.

Table S2. Calculated the electrostatic potential shifting values $\Delta \phi$ (eV) of Se and Te surfaces of
the gas molecule NH ₃ , PH ₃ and AsH ₃ adsorption on Te-layer (Se-layer), in comparison to pure
Janus NbTeSe monolayer. The positive (negative) value of $\Delta \phi$ represents up-shifting (down-
shifting) of the gas molecule adsorbed surface, respectively.

$\Delta \phi$	NH ₃	PH ₃	AsH ₃
Se-layer	-0.025	-0.013	0.025
Te-layer	-0.013	0.036	0.066

Figure S4. The variation of adsorption distance for NH₃, PH₃ and AsH₃ adsorbed on Se-layer and Te-layer, respectively, as the function of applied biaxial tensile strain.