Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Material (ESI) for New Journal of Chemistry

Luminescent sensing, DFT, extraction and monitoring of Cr³⁺ and Al³⁺ via

the application of first derivative fluorescence spectroscopy

Soma Mukherjee ^a*, Soumi Betal ^a, Asoke Prasun Chattopadhyay ^b

^a Department of Environmental Science, University of Kalyani
^b Department of Chemistry, University of Kalyani
Kalyani, Nadia – 741235, West Bengal, India
Email: somam580@gmail.com Fax: 033-25828282; Phone: 033-25828750 Ext. 291, 292

Contents

- 1. ¹H NMR spectra of L in DMSO- d_6 .
- 2. 13 C NMR spectra of L in DMSO-d₆.
- 3. IR spectra of L.
- 4. Mass Spectra of L.
- 5. IR spectra of L-Cr³⁺.
- 6. Mass Spectra of L- Cr^{3+} .
- 7. IR spectra of L-Al³⁺.
- 8. Mass Spectra of L-Al³⁺.
- 9. Job's plot of (a) L-Al³⁺ (b) L-Cr³⁺.
- 10. Effect of emission L upon addition of water (0.0-50.0% in DMSO).
- 11. Solvent effects (DCM, DMSO, CH3OH, DMSO/H2O (1:1)) of L.
- 12. Fluorescence titration (λ_{ex} , 340.0 nm) of L (1.0×10⁻⁷ M) upon addition of various amounts of (**a**) Fe³⁺ ions (0.5 equiv.) in DMSO.
- 13. FTIR spectra of (a) L, (b) L-Al³⁺, (c) L-Cr³⁺.
- 14. Optimized structure of L.
- 15. Frontier molecular orbitals of L.
- 16. Optimised structure of (a) L-Al³⁺ and (b) L-Cr³⁺.
- 17. Frontier molecular orbitals of L-Al³⁺.
- 18. Frontier molecular orbitals of L-Cr³⁺.
- 19. pH effects on absorbance values of (a) L-Al³⁺ and (b) L-Cr³⁺.

Fig. S1 ¹H NMR spectra of L in DMSO- d_6 .

Fig. S2 ¹³C NMR spectra of L in DMSO- d_6 .

Fig. S3 IR spectra of L.

Fig. S4 Mass Spectra of L.

Fig. S6 Mass Spectra of L-Cr³⁺.

Fig. S8 Mass Spectra of L-Al³⁺.

Fig. S9 Job's plot of (a) L-Al³⁺ (b) L-Cr³⁺.

Fig. S10 Effect of emission L upon addition of water (0.0-50.0% in DMSO).

Fig. S11 Solvent effects (DCM, DMSO, CH₃OH, DMSO/H₂O (1:1)) of L.

Fig. S12 Fluorescence titration (λ_{ex} , 340.0 nm) of L (1.0×10⁻⁷ M) upon addition of various amounts of (**a**) Fe³⁺ ions (0.5 equiv.) in DMSO.

Fig. S13 FTIR spectra of (a) L, (b) L-Al³⁺, (c) L-Cr³⁺.

Fig. S14 Optimized structure of L.

Fig. S15 Frontier molecular orbitals of L.

Fig. S16 Optimised structure of (a) L-Al³⁺ and (b) L-Cr³⁺.

Fig. S17 Frontier molecular orbitals of L-Al³⁺.

Fig. S18 Frontier molecular orbitals of L-Cr³⁺.

Fig. S19 pH effects on absorbance values of (a) L-Al³⁺ and (b) L-Cr³⁺.