SUPPLEMENTARY TABLE

Table S1 Classification, mechanism, application of various turn-on trivalent (Al³⁺, Cr³⁺, Fe³⁺) sensors.

SI. No.	Moiety	Al ³⁺ sensing		Cr ³⁺ sensing		Fe ³⁺ sensing			Solvent	LOD	No.	Mecha	Applica	Ref
		Chromo -genic $\lambda_{abs(L)}$ nm; $\lambda_{abs(L+F)}$ nm	Fluoro -genic λ_{ex} nm; $\lambda_{em(L)}$ nm; $\lambda_{em(L+F)}$ nm	Chromo -genic $\lambda_{abs(L)}$ nm; $\lambda_{abs(L+F)}$ nm	Fluoro -genic λ_{ex} nm; $\lambda_{em(L)}$ nm; $\lambda_{em(L+F)}$ nm	Chromo -genic $\lambda_{abs(L)}$ nm; $\lambda_{abs(L+F)}$ nm	Fluoro -genic λ_{ex} nm; $\lambda_{em(L)}$ nm; $\lambda_{em(L+F)}$ nm	Φ (Al ³⁺ ; Cr ³⁺ ; Fe ³⁺)	_	(Al ³⁺ ; Cr ³⁺ ; Fe ³⁺)	Ste ps for syn th- esis	-nism	-tion	
1.	Anthracene moiety 10-(2-(((pyridin-2- yl)methylamino)methyl)ph enol)methyl-anthracene	332, 348, 366, 386; 337, 358, 371, 391	364; 411; 421	332, 348, 366, 386; 337, 358, 371, 391	364; 411; 421	332, 348, 366, 386; 337, 358, 371, 391	364; 411; 421	Very low	МеОН	2.4; 1.6; 0.6 μM	2	PET	-	12
2.	Anthracene moiety 2-(Benzothiazol-2-yl)-4- bromo-3-((anthracen-9- ylmethylene)aminopropox y)benzene	-	-	369, 383; 442	380; 428; 576	369, 383; 369, 442	380; 428; 576	-; 33 times; 24 times	MeCN	-; 0.46 μM; 0.45 μΜ	4	PET	-	13
3.	Anthracene moiety Cu complex of anthracene based valine derivative	-	365; fluores -cence increment	-	365; fluores -cence increment	-	365; fluores -cence increment	-	MeOH/ H ₂ O (8:2, v/v)	-	-	PET inhibitio n	-	14
4.	Naphthalimide moiety	409; 392	530;530 (41 fold Increment)	409; 394	530; 530 (30 fold increment)	409; 381	530; 530 (50 fold increment)	0.016 0.67 0.47 0.80	9:1, v/v, H ₂ O: CH ₃ CN	3.6×10 ⁻⁷ M; 3.8×10 ⁻⁷ M; 3.5×10 ⁻⁷ M	2	PET inhibitio n	Bio -imaging of HaCaT cells	15
5.	Pyrene moiety 2-((pyren-1- ylmethylene)amino)ethano l	355; 435	395; 417; 500	355; 435	395; 417; 500	355; 435	395; 417; 500	168; 180; 208 fold	CH ₃ CN	10 ⁻⁷ M	1	AIEEE	Raw 264.7 cells	16
6.	Pyrene moiety (N_1E,N_3E)-N_1,N_3- bis(pyren-1-ylmethylene) isophthalohydrazide	379; 367	379; 443; 527	379, 369	379; 443; 527	379; 375	379; 443; 527		DMSO: HEPES (8:2 in	2.88; 1.89; 3.00 μM	1	Excimer formatio n	HeLa cells	17

									vol.).					
7.	Quinoline moiety	296; 315	296; 406; 413	296; 315	296; 406; 413	296; 315	296; 406; 413	0.05; 0.29; 0.35; 0.26	100% Aqueous medium	2.10 μM; 4.16 μM; 2.09 μM,	2	chelation	Bio -imaging in HeLa cells	18
8.	Quinoline moiety spirobenzopyran-quinoline (SBPQ)	306, 362; 362, 440	460; 552; 675 (88 fold Increment)	306, 362; 362, 440	460; 552; 675 (34 fold Increment)	306, 362; 362, 440	460; 552; 675 (40 fold Increment)	0.01; 0.42; 0.18; 0.25	$CH_{3}CN-HEPES$ buffer solution (1/1, v/v, pH = 7.4)	3.24×10 ⁻⁸ M		ICT	Candida albicans cells, Tecoma stans pollen grains	19
9.	Rhodamine moiety naphthopyran-rhodamine 6G dyad	471; 450- 580	516; non fluorescent ; 556	471; 450- 580	516; non fluorescent ; 556	471; 450- 580	516; non fluorescent ; 556	-; 0.08; 0.33; 0.37	CH ₃ OH	5.61×10 ⁻⁷ M	2		Test paper	20
10.	Rhodamine moiety BODIPY-rhodamine	374, 499; 559	374, 499; 559 (13 fold increment)	374, 499; 559	374, 499; 559 (12 fold increment)	374, 499; 559	374, 499; 559 (9 fold increment)	$I_{585}/I_{517} \\ was \\ increas \\ ed by \\ 13, 12, \\ 9 \text{ fold}$	1:1 CH ₃ CN/ 0.01M Tris HCl buffer	-	7	bond energy transfer (TBET)	W138 (normal lung fibroblastc ells)	21
11.	Rhodamine moiety	-; 555	530; non fluorescent ; 588	-; 555	530; non fluorescent ; 588	-; 555	530; non fluorescent ; 588		CH ₃ OH/ H ₂ O (8:2, v/v,	3.0×10 ⁻³ ; 3.0×10 ⁻³ ; 2.9×10 ⁻³	3		-	22
12.	Rhodamine moiety N-(Rhodamine-B)lactam- ethylenediamine,[20-(2- aminoethyl)- 3,6- bis(diethylamino)-10H- spiro[anthracene-9,10- isoindolin]-30- one	330, 270; 561	495; non fluorescent ; 582	330, 270; 561	495; non fluorescent ; 582	330, 270; 561	495; non fluorescent ; 582	0.014; 0.34; 0.49; 0.24	CH ₃ OH/ H ₂ O,1:1, v/v	-	3	FRET	Test paper strip	23
13.	Rhodamine moiety 2-(2-(5-bromo-2- hydroxybenzylideneamino)ethyl)-3',6'- bis(diethylamino)spiro[isoi ndoline-1,9-xanthen]-3- one	No significant absorption band; 528	500; non- fluorescent ; 552	No significant absorption band; 528	500; non- fluorescent ; 552	No significant absorption band; 528	500; non- fluorescent ; 552	0.008; 0.75; 0.36; 0.26	CH ₃ OH/ H ₂ O (7:3, v/v) (pH 7.2)	1.18; 1.80 and 4.04 nM	2	Spiro -lactam ring opening	3 and 5 input advanced level logic gates, molecular keypad lock and memory device	24

14.	Rhodamine moiety	240, 274, 317; 560	350, 500; non- fluorescent ; 583	240, 274, 317; 560	350, 500; non- fluorescent ; 583	240, 274, 317; 560	350, 500; non- fluorescent ; 583	0.05; 0.28; 0.22; 0.71	C ₂ H ₅ OH/ H ₂ O (1:1, v/v)	1.17 μM; 3.16 μM; 2.50 μM	2	Spiro -lactam ring opening	-	25
15.	Rhodamine moiety Rhodamine p- chlorobenzaldehyde	No significant absorption band; 550	-; non- fluorescent ; fluorescen ce between 560-590 nm	No significant absorption band; 550	-; non- fluorescent ; fluorescen ce between 560-590 nm	No significant absorption band; 550	-; non- fluorescent ; fluorescen ce between 560-590 nm	-	Tris–HCl buffer solution (pH 7.4)	-; 8.64 μM; 10.5 μM	2	-	-	26
16.	Rhodamine moiety Rhodamine-naphthalimide dyad probe	400, 540- 580; 562 (18 fold increment)	400; 532; 583	400, 540- 580; 562 (20 fold increment)	400; 532; 583	400, 540- 580; 562 (126 fold increment)	400; 532; 583	-	1:1 v/v 0.01MTri s HCl– CH ₃ CN, pH 7.4.	-	7	FRET	Bio -imaging in W138 cells	27
17.	Rhodamine moiety	360; 556	360; 566; 586	360; 556	360; 566; 586	-	-	0.0018; -; 0.0524;	MeOH/ H ₂ O (4:1, v/v)	3.6×10 ^{−8} M; 7.5×10 ^{−8} M; -	4	Spiro -lactam ring opening	Bio -imaging in A549 cells	28
18.	Vaniline derivatives	-	278; non fluorescent ; 400-500 fluorescen ce increment	_	278; non fluorescent ; 1500 fluorescen ce increment	_	278; non fluorescent ; 2500 fluorescen ce increment	0.21	_	-		_	-	29