Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Support information

Fe/Fe₃C encapsulated in nitrogen source-mediated active-N-rich

defective carbon nanotubes for bifunctional oxygen catalysis

Fuwen Yang^{a,b}, Ying Lei*a,b,c, Huaming Xie^a, Dandan Zhang^a, Renxing Huang^a,

Xingyong Liu^{a,b}, Honghui Wang^a

^aCollege of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, PR China. ^bCollaborative Innovation Center of Industrial Organic Solid Waste Resource Disposal, Sichuan University of Science & Engineering, Zigong 643000, PR China. ^cSchool of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 64300, Sichuan, PR China.

Fig. S1 (a, b) TEM images of Fe-P-OCNT catalysts, (c, d) TEM images of Fe-U-OCNT catalysts.

Fig. S2 (a, b, c) High resolution C 1s spectra, (d) The atomic content of carbon-related functional groups.

Fig. S3 (a) Comparison of LSV curves for Fe-N-C-700, Fe-N-C-800, Fe-N-C-900 catalysts, (b) Comparison of electrochemical ORR parameters of samples derived at different temperatures.

Fig. S4 The comparison of onset potentials with reported works.

Fig. S5 (a, b, c, d) LSV curves for N-OCNT, Fe-P-OCNT, Fe-U-OCNT and Pt/C at different rotating rates, the inset is their corresponding K-L plots in the range from 0.30 to 0.50 V, respectively.

Fig. S6 (a) RRDE of LSV curves in O_2 -saturated 0.1 M KOH at 1600 rpm with a scanning rate of 10 mV s⁻¹; (b) Electron transfer number (n, top panel) and peroxide yield (bottom panel) obtained based on the corresponding RRDE data.

Fig. S7 (a, b, c, d) CV curves of Fe-P-OCNT, Fe-U-OCNT and Fe-N-OCNT catalysts;

(e, f) The capacitive current measured at 1.072 V plotted as a function of scan rate of all catalysts.

Fig. S8 (a) The choronoamperometric response curves of Fe-N-OCNT and Pt/C; (b) The comparison choronamperometric response plots of Fe-N-OCNT and Pt/C with an additional methanol of 5 mL at 500s.

Fig. S9 OER chronopotentiometric response of Fe-N-OCNT and RuO_2 at a constant current of 10 mA cm⁻².

Catalysts	ORR	OER	∆E=	References
	E _{1/2} (V)	E _{j=10mA cm} ⁻ ² (V)	E _{j=10} -E _{1/2} (V)	
Fe-N-OCNT	0.86	1.583	0.723	This work
Fe@C-NG/NCNTs	0.84	1.68	0.84	J. Mater. Chem. A, 2018, 6(2): 516-526.
N-NiO	0.69	1.50	0.81	ACS Appl. Mater. Int., 2019, 11(34): 30865-30871
FeCo-N _x -C	0.89	1.67	0.78	Angew Chem. Int. Ed. Engl. 2018;57:1856-62.
Co ₃ O ₄ NS/ZTC	0.70	1.61	0.91	J. Mater. Chem. A, 2019, 7(16): 9988-9996.
Fe _{1.2} Co@NC/NCN Ts	0.82	1.58	0.76	ACS Sus. Chem. Eng. 2019, 7, 9, 8530-8541.
N-GCNT/FeCo-3	0.92	1.73	0.81	Adv. Energy Mater. 2017, 7, 1602420.
Co-N-CNTs	0.90	1.69	0.79	Adv. Funct. Mater. 2018, 28, 1705048.
Co-N,B-CSs	0.83	1.66	0.83	ACS Nano 2018, 12, 1894- 1901.
FeN _x /PNC	0.86	1.63	0.77	ACS Nano 2018, 12, 1949
CoS _x /NCS	0.79	1.69	0.90	Mater. Res. Bull., 2020, 125, 110770.
FeNMC-2	0.885	Not given	Not given	Appl. Catal. B: Environ., 2020, 265, 118593
NPC-1000	0.82	Not given	Not given	Nano-Micro Lett., 2020, 12, 20

Table S1 The comparison of the bifunctional activity of electrocatalysts reported inthe previous literature.

Fig. S10 Power density comparison of pioneer works.