Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

The monoiron anion, fac-[Fe(CO)₃I₃]⁻ and its organic aminium salts: their preparation, CO-release and cytotoxicity

Xiuqin Yang,^{‡a,b} Jing Jin,^{‡c} Zhuming Guo,^d Zhiyin Xiao,^{*a} Naiwen Chen,^c Xiujuan Jiang,^a Yi He,^{*c} and Xiaoming Liu^{*a}

^a College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China

^bCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

^c Department of Urology, The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China

^d College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 514006, China

[‡] These authors have equal contribution towards this work.

Email: xiaoming.liu@mail.zjxu.edu.cn (X. Liu); zhiyin.xiao@zjxu.edu.cn (Z. Xiao); heyi@zjxu.edu.cn (Y. He)

Tel./Fax: +86 (0)573 83643937

Contents

Figure S1 1 H / 13 C NMR spectra of salt 1 in acetone- d^{6} solvent.

Figure S2 ¹H / ¹³C NMR spectra of salt 2 in acetone- d^6 solvent.

Figure S3 $^{1}H / ^{13}C$ NMR spectra of salt 3 in acetone- d^{6} solvent.

Figure S4 ¹H / ¹³C NMR spectra of salt 4 in acetone-*d*⁶ solvent.

Figure S5 1 H / 13 C NMR spectra of salt 5 in acetone- d^{6} solvent.

Figure S6 Mass spectra of salt 1 in MeOH.

Figure S7 Mass spectra of salt 2 in MeOH.

Figure S8 Mass spectra of salt 3 in MeOH.

Figure S9 Mass spectra of salt 4 in MeOH.

Figure S10 Mass spectra of salt 5 in MeOH.

Figure S11 Infrared spectral variation during the CO-releasing process of salts 2 (a),

3 (b) and **4** (c), and **5** (d) in DMSO with a concentration of 8.0 mmol L^{-1} at 37 °C under an open atmosphere in dark, respectively.

Figure S12 Plot of rate constant (k_{obs}) of the salts in DMSO against the logarithm of the octanol/water partition coefficient (log P) of the amines.

Figure S13 Infrared spectral variation during the CO-releasing process of salts 1 (a), 2 (b), 3 (c), 4 (d), and 5 (e) in D_2O with a concentration of 8.0 mmol L^{-1} at 37 °C under an open atmosphere in dark, respectively.

Figure S14 Plots of the vibrational absorption (2090 cm⁻¹) of salts 1 (a), 2 (b), 3 (c), 4 (d), and 5 (e) against the process time in D₂O solvent (conditions: 8.0 mmol L⁻¹/ 37 °C / open air / dark).

Figure S15 UV-vis spectra of TMB in HOAc-NaOAc buffer (pH = 4.5) with the presence of salt **5** under different atmospheres.

Figure S16 A representative photo of an aqueous solution of salt **5** after adding of a CCl₄ organic solvent.

Figure S17 (a) Infrared spectral variation during the CO-releasing process of salt **5** in the present of NaI (0.024 mol L^{-1}) and (b) plot of the vibrational absorption (2090 cm⁻¹) of salt **5** against the process time in D₂O solvent.

Figure S18 (a) Infrared spectral variation during the CO-releasing process of salt 5 in

the present of NaI (0.24 mol L^{-1}) and (b) plot of the vibrational absorption (2090 cm⁻¹) of salt **5** against the process time in D₂O solvent.

Figure S19 (a) Infrared spectral variation during the CO-releasing process of salt **5** in the present of glucose (0.1 mol L⁻¹) and (b) plot of the vibrational absorption (2090 cm⁻¹) of salt **5** against the process time in D_2O solvent.

Figure S20 Infrared spectral variation during the CO-releasing process of salt 5 in D_2O solvent under N_2 atmosphere in dark.

Figure S21 Mass spectra of i-CORM's solution of salt 5 in D₂O solvent.

Figure S22 nonlinear regression results of viabilities of RT112 against their responded Logarithm of salt's concentration (log *c*) to estimate IC₅₀ values of **1** (a), **2** (b), **3**(c), **4** (d) and **5** (e) in 24 h, respectively.

Figure S23 nonlinear regression results of viabilities of RT112 against their responded Logarithm of the i-CORMs' concentration (log *c*) derived from salt **5** to estimate its IC_{50} value in 24 h.

Figure S24 nonlinear regression results of viabilities of SV-HUC-1 against their responded Logarithm of salt's concentration (log c) to estimate IC₅₀ values of 1 (a), 2(b), 3 (c), 4 (d) and 5 (e) in 24 h, respectively.

Table S1 Crystal data and structural refinements for salts 1–4.

Table S2 Selected bond lengths (Å) and angles (°) for salts 1–4.

Figure S1 ¹H / ¹³C NMR spectra of salt **1** in acetone-*d*⁶ solvent.

Figure S2 1 H / 13 C NMR spectra of salt **2** in acetone- d^{6} solvent.

Figure S3 ¹H / ¹³C NMR spectra of salt 3 in acetone-*d*⁶ solvent.

Figure S4 ¹H / ¹³C NMR spectra of salt 4 in acetone-*d*⁶ solvent.

Figure S5 ¹H / ¹³C NMR spectra of salt **5** in acetone-*d*⁶ solvent.

Figure S6 Mass spectra of salt 1 in MeOH.

Figure S7 Mass spectra of salt 2 in MeOH

Figure S8 Mass spectra of salt 3 in MeOH.

Figure S9 Mass spectra of salt 4 in MeOH.

Figure S10 Mass spectra of salt 5 in MeOH.

Figure S11 Infrared spectral variation during the CO-releasing process of salts 2 (a), 3 (b) and 4 (c), and 5 (d) in DMSO with a concentration of 0.008 mol L^{-1} at 37 °C under an open atmosphere in dark, respectively.

Figure S12 Plot of rate constant (k_{obs}) of the salts in DMSO against the logarithm of the octanol/water partition coefficient (log P) of the amines.

Figure S13 Infrared spectral variation during the CO-releasing process of salts 1 (a), 2 (b), 3 (c), 4 (d), and 5 (e) in D_2O with a concentration of 8.0 mmol L^{-1} at 37 °C under an open atmosphere in dark, respectively.

Figure S14 Plots of the vibrational absorption (2090 cm⁻¹) of salts 1 (a), 2 (b), 3 (c), 4 (d), and 5 (e) against the process time in D₂O solvent (conditions: 8.0 mmol L⁻¹/ 37 °C / open air / dark).

Figure S15 UV-vis spectra of TMB in HOAc-NaOAc buffer (pH = 4.5) with the presence of salt 5 under different atmospheres.

Figure S16 A representative photo of an aqueous solution of salt **5** after adding of a CCl₄ organic solvent.

Figure S17 (a) Infrared spectral variation during the CO-releasing process of salt **5** in the present of NaI (0.024 mol L^{-1}) and (b) plot of the vibrational absorption (2090 cm⁻¹) of salt **5** against the process time in D₂O solvent.

Figure S18 (a) Infrared spectral variation during the CO-releasing process of salt **5** in the present of NaI (0.24 mol L^{-1}) and (b) plot of the vibrational absorption (2090 cm⁻¹) of salt **5** against the process time in D₂O solvent.

Figure S19 (a) Infrared spectral variation during the CO-releasing process of salt **5** in the present of glucose (0.1 mol L^{-1}) and (b) plot of the vibrational absorption (2090 cm⁻¹) of salt **5** against the process time in D₂O solvent.

Figure S20 Infrared spectral variation during the CO-releasing process of salt 5 in D_2O solvent under N_2 atmosphere in dark.

Figure S21 Mass spectrum of i-CORM's solution of salt 5 in D₂O solvent.

Figure S22 nonlinear regression results of viabilities of RT112 against their responded Logarithm of salt's concentration (log *c*) to estimate IC₅₀ values of **1** (a), **2** (b), **3**(c), **4** (d) and **5** (e) in 24 h, respectively.

Figure S23 nonlinear regression results of viabilities of RT112 against their responded Logarithm of the i-CORMs' concentration (log *c*) derived from salt **5** to estimate its IC_{50} value in 24 h.

Figure S24 nonlinear regression results of viabilities of SV-HUC-1 against their responded Logarithm of salt's concentration (log *c*) to estimate IC₅₀ values of **1** (a), **2**(b), **3** (c), **4** (d) and **5** (e) in 24 h, respectively.

	1	2	3	4
CCDC no.	1963446	1963447	1963448	1963449
Formula	C ₅ H ₈ FeI ₃ NO ₃	C ₆ H ₁₀ FeI ₃ NO ₃	C7H12FeI3NO3	C ₈ H ₁₄ FeI ₃ NO ₃
Formula weight	566.67	580.70	594.73	608.75
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/m$	P-1
a/Å	9.2096(8)	12.0358(10)	8.2405(9)	8.092(2)
b/Å	14.5251(12)	7.9704(3)	8.0958(9)	8.2197(8)
c/Å	10.4460(9)	16.4638(10)	12.6129(12)	13.3496(16)
α/°	90	90	90	100.214(9)
β/°	91.739(7)	108.505(8)	106.571(10)	94.639(16)
$\gamma/^{\circ}$	90	90	90	92.457(16)
Volume/Å ³	1396.7(2)	1497.71(18)	806.50(15)	869.5(3)
Z	4	4	2	2
F(000)	1016.0	1048.0	540.0	556.0
2 0 /°	5.61 to 59.09	5.738 to	6.74 to 49.992	5.698 to
		58.634		49.994
Reflections	5969	12199	4931	3010
collected				
Independent	3229	3575	1515	3010
reflections				
Goodness-of-fit	1.030	1.032	1.040	1.046
on F ²				
$R_1, wR_2 (I \ge 2\sigma(I))$	0.0631, 0.1412	0.0596, 0.0984	0.0572, 0.1447	0.1170, 0.292
R_1 , wR_2 (all data)	0.1131, 0.1687	0.1065, 0.1177	0.0890, 0.1711	0.1625, 0.3462

 Table S1 Crystal data and structural refinements for salts 1–4.

salt	1	2	3	4
Fe1-C1	1.779(16)	1.790(12)	1.758(18)	1.78(2)
Fe1-C2	1.798(16)	1.772(12)	1.762(14)	1.84(3)
Fe1-C3	1.803(15)	1.802(13)	-	1.71(4)
C1-O1	1.106(16)	1.113(12)	1.108(17)	1.08(3)
C2-O2	1.130(16)	1.139(12)	1.139(14)	1.07(3)
C3-O3	1.134(16)	1.082(12)	-	1.20(4)
Fe1-I1	2.6637(19)	2.6431(15)	2.6482(19)	2.648(4)
Fe1-I2	2.6531(19)	2.6425(16)	2.595(8)	2.659(4)
Fe1-I3	2.650(2)	2.6580(15)	-	2.657(4)
Fe1-C1-O1	178.2(15)	178.0(11)	175.4(19)	176(3)
C1-Fe1-C2	94.2(6)	93.7(5)	93.6(6)	93.3(12)
C1-Fe1-I1	179.6(4)	86.1(4)	179.0(6)	86.5(10)
I1-Fe1-I2	93.00(6)	93.70(5)	94.8(3)	93.61(13)

Table S2 Selected bond lengths (Å) and angles (°) for salts 1–4.