Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI[†])

A "turn-on" fluorescent and colorimetric chemodosimeter for selective detection of Au³⁺ ions in solution and in live cells via Au³⁺ -induced hydrolysis of rhodamine-derivative Schiff base

Sanchita Mondal,^{*,a} Saikat Kumar Manna,^b Sudipta Pathak,^b Aritri Ghosh,^c Pallab Datta,^c Debasish Mandal,^d and Subrata Mukhopadhyay^a

^aDepartment of Chemistry, Jadavpur University, Kolkata 700032, India

^bDepartment of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal 721657, India

^cCentre for Health Care Science, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India

^dSchool of Chemistry and Biochemistry, THAPAR Institute of Engineering and Technology, Patiala 147004, Punjab, India

Figure S1: ¹H NMR spectrum of compound 2 in DMSO-d₆.

Figure S2: Mass spectrum of compound 2.

Figure S3: ¹H NMR spectrum of probe L in CDCl₃ solution.

Figure S4: ¹³C NMR spectrum of probe L in CDCl₃ solution.

Figure S5: Mass spectrum of probe L.

Figure S6: Mass spectrum of hydrolysis products of L by Au^{3+} ions.

Figure S7: UV–vis absorption spectra of L (1.0×10^{-5} M) in the presence of various anions, amino acid and reactive oxygen species (1.0×10^{-4} M) in CH₃CN/H₂O (1: 1, v/v, 10 mM HEPES buffer, pH 7.4) solution.

Calculation for Limit of Detection (LOD):

The LOD of L for Au^{3+} was determined using the following equation:

LOD = 3Sbl/S, Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

Figure S8: Calibration curve for fluorescence titration of L with Au³⁺. From the graph we get slope (S) = 2×10^7 Standard deviation (Sb1 = 10.05925) Thus, using the formula, we get the LOD = 1.508887×10^{-6} M = 1.51μ M.

Figure S9: Time dependent change of emission intensity of probe L in the absence and presence of 1.5 equivalent Au³⁺ ions) in CH₃CN/H₂O (1 : 1, v/v, 10 mM HEPES buffer, pH 7.4) solution ($\lambda_{ext} = 560$ nm).

Figure S10: Fluorescence emission spectra of L (1.0×10^{-5} M) in the presence of various anions, amino acid and reactive oxygen species (1.0×10^{-4} M) in CH₃CN/H₂O (1: 1, v/v, 10 mM HEPES buffer, pH 7.4) solution. $\lambda_{ext} = 560$ nm.

Figure S11: Fluorescence response of L ($c = 1.0 \times 10^{-5}$ M) to 1.5 equiv. addition of Au³⁺ (the orange bar portion) and to the mixture of 10 equiv. of other metal ions with 1.0 equiv. of Au³⁺ (the magenta bar portion, left to right- Cr³⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Pb²⁺, Hg²⁺, Pt²⁺, Pd²⁺, Al³⁺ and Ag⁺).

Figure S12: (a) UV–vis absorption spectra of L (c = $1.0 \times 10-5$ M) to 1.5 equiv addition of Au³⁺ (the magenta graph) and to the mixture of 10 equiv. of ^tBu₄NCN ions with 1.5 equiv. of Au³⁺ (the pink graph); (b) Fluorescence response of L (c = 1.0×10^{-5} M) to 1.5 equiv addition of Au³⁺ (the orange graph) and to the mixture of 10 equiv. of ^tBu₄NCN ions with 1.5 equiv. of Au³⁺ (the red graph).

Figure S13: TLC study of pure rhodamine B and L+Au³⁺ (a) under visible light and (b) under UV light.

Figure S14: FTIR spectra of (a) L; (b) L+Au³⁺ and (c) pure rhodamine B.

Sl. No.	Structure of Probe	Media	Detection limit	Theoretic al	Biological application
				calculatio n	
1.	Our Probe $\downarrow \downarrow $	CH ₃ CN/H ₂ O (1:1, v/v, 10 mM HEPES buffer, pH 7.4)	1.51 μM	Yes	Our chemodosimeter can detect and image intracellular Au ³⁺ ions in MDA- MC3T3 cells.
2.	$O \rightarrow N \rightarrow O$ $V \rightarrow V \rightarrow O$ NH_2 (Organic Letters, 2010, 12 , 5310-5313) ¹	HEPES buffer (0.01 M, pH)7.4) (0.05% DMSO, v/v)	0.05 μM (10 ppb)	No	No
3.	(<i>Chem. Eur. J. 2011</i> , 17 , 9066 – 9069) ²	Phosphate buffer (pH ¹ / ₄ 7.2) (0.15% CH ₃ CN, v/v)	3.9×10 ⁻⁷ M	No	No

Table S1. The comparison of the present probe L with other reported probes for Au^{3+} ions

4.	(Inorg. Chem. 2012, 51, 2880–2884) ³	In a mixture of CH ₃ CN and acetate buffer solution (pH 4.7, 10 mM) (1:1, v/v).	1.1 × 10 ⁻⁷ M	No	No
5.	EtOOC COOEt	Phosphate buffer (pH ¹ / ₄ 7.2) (0.15% CH ₃ CN, v/v)	No	No	No
6.	(Anal. Methods, 2013, 5, 3639–3641)5	HEPES buffer	4. 4×10⁻ ⁷ M	No	No
7.	$(Dyes and Pigments 2015, 112, 236-238)^{6}$	Mixture of CH ₃ CN and 10 mM, pH 8.0 PBS buffer solution (1/1, v/v)	95 ppb	No	No

8.		THF-H ₂ O		No	No
	HO N:N O N:N O N B F F	buffered with 10 mM HEPES (2 μM)	10 nM		
	(<i>RSC Advances</i> 2015, 5 , 82887-82893) ⁷				
9.	(Dues and Biometric 2010, 164, 14, 10) 8	1:1 (v/v) mixture of acetate buffer solution (pH = 4.76, 20 mM) and DMSO	4.8 × 10 ^{−8} M (9.5 ppb)	No	No
	(<i>Dyes and Pigments</i> 2019, 164 ,14-19) ⁸				

*1 Starting materials for the synthesis of our probe L are easily available compared to the reported compound.

*² The synthetic steps for the probe recorded are more than our probe and a few steps are of low yield.

*³ Compared to the synthesis of L (our work), yield of the reported compound is low.

*⁴ The reported compound detects Au³⁺ ions through 'turn-off' mechanism. However, a 'turn-on' chemosensor (fluorescence enhanced) would be more efficient for metal ion detection.

*⁵ Yield of the reported compound is low.

*⁶ Our probe shows 696-fold fluorescence enhancement in presence of Au^{3+} ions compared to the reported probe (9-fold).

*7 The synthetic steps for the probe recorded are more than our probe. Our probe L selectively detects Au^{3+} ions whereas the reported probe is sensitive not only to Au^{3+} ions, but also to Hg^{2+} , Fe^{3+} .

*8 Yield of the reported probe is low.

*¹⁻⁸ None of the above-mentioned tabulated probes, except ours, reported their biological applications.

Figure S15: UV-vis spectra of (a) L (black); (b) $L + Au^{3+}$ (magenta color).

Theoretical study:

Table S2. Calculated excitation energies (eV), oscillator strengths (f), contributions for L, I_2 and P. The data were calculated by the TDDFT//B3LYP/6-31+G(*d*,*p*) level of theory based on the optimized ground state geometries.

Species	Electronic Transition	Excitation Energy	f	Contributions ^a
	$S_0 \rightarrow S_{11}$	3.3025 eV 375.43 nm	0.8188	H-1 \rightarrow L+2 (93%)
L	$S_0 \rightarrow S_{29}$	4.0045 eV 309.61 nm	0.2111	$H -10 \rightarrow L (52\%)$
	$S_0 \rightarrow S_1$	2.5763 eV 481.24 nm	0.9883	$H \rightarrow L (99\%)$
I ₂	$S_0 \rightarrow S_{17}$	4.9369 eV 251.14 nm	0.4577	$H - 1 \rightarrow L + 2 (80\%)$
	$S_0 \rightarrow S_1$	2.5238 eV 491.26 nm	0.9900	$H \rightarrow L (99\%)$
Р	$S_0 \rightarrow S_{16}$	4.9031 eV 252.87 nm	0.5616	$H \rightarrow L (99\%)$

^a H and L represents HOMO and LUMO respectively.

Table S3.	Energies	of the	highest	occupied	molecular	orbital	(HOMO)	and lowe	est u	noccupie	ed
molecular	orbital (LU	JMO)									

Species	E _{HOMO} (a.u)	E _{LUMO} (a.u)	$\Delta \mathbf{E}$ (a.u)	$\Delta \mathbf{E}$ (eV)	$\Delta \mathbf{E}$ (kcal/mol)
L	-0.19977	-0.1200	0.07977	2.170669332	50.1
I ₂	-0.21700	-0.1145	0.10250	2.789189000	64.3
Р	-0.22087	-0.1212	0.09966	2.711908056	62.5

Figure S16: Molecular orbital plots of L, I_2 and P.

Figure S17: MTT assay studies.

Quantum yield (ϕ) calculation:

Here, the quantum yield ϕ was measured by using the following equation:

 $\phi_{x} = \phi_{s} (F_{x} / F_{s}) (A_{s} / A_{x}) (n_{x}^{2} / n_{s}^{2})$

Where,

X & S indicate the unknown and standard solution respectively, ϕ = quantum yield,

F = area under the emission curve, A = absorbance at the excitation wave length,

n = index of refraction of the solvent. Here ϕ measurements were performed using Rhodamine B in ethanol as standard [$\phi = 0.69$]

For standard (s) rhodamine B in ethanol the following values were determined:

 $n_s = 1.3614$ (for ethanol); $n_x = 1.3441$ (for acetonitrile); $\phi_s = 0.69$.

We calculated the quantum yield of L using the above equation and the value was found to be 0.001.

We calculated the quantum yield of L in presence of Au^{3+} ions using the above equation and the value was found to be 0.689.