Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Effect of Number and Different types of Proton Donors on Excited-State Intramolecular Single and Double Proton Transfers of Bipyridine Derivatives: Theoretical Insights

Komsun Chaihan^{a,b}, Nawee Kungwan^{a,c,*}

^a Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^b The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand

^c Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

*Corresponding author e-mail: naweekung@gmail.com

Figure S1. Optimized structures of tautomer (T), mono-tautomer (NT), and di-tautomer (TT) forms computed at B3LYP/TZVP level of theory in gas phase.

Molecule	Form	R1/I	R1 🗆	R2/I	R2 🗆	R3/1	R3□	R4/I	R4□	O· or N	··N [···N	N1C2 /N2C3	C3C4 3C2C1
	1 01 111	S ₀	S_1	S_0	S_1	S_0	S_1	S_0	S_1	S_0	S_1	S_0	S_1
Mono-PT type													
ВРОН	Κ	1.032	1.027	1.797	1.792	_	_	_	_	2.534	2.677	0.0	0.0
BP(NH ₂)	Κ	1.037	1.037	1.814	1.775	—	—	—	—	2.667	2.673	0.0	0.0
Di-PT type													
BP(OH) ₂	MK	1.110	1.033	1.441	1.764	1.009	0.989	1.684	1.779	2.602	2.655	0.0	12.0
	DK	1.063	1.038	1.607	1.722	1.063	1.038	1.607	1.722	2.552	2.610	0.0	0.0
BP(NH ₂) ₂	MK	1.047	1.070	1.715	1.632	1.020	1.014	1.841	1.958	2.651	2.739	0.2	15.0
	DK	1.113	1.052	1.504	1.685	1.113	1.052	1.504	1.684	2.511	2.598	0.0	0.0
										N····N	∕ O …N		
BP(OH)(NH ₂)	MK (O)	1.021	1.013	1.851	1.997	1.040	1.037	1.705	1.694	2.663/ 2.609	2.768/ 2.601	0.0	14.0
	MK (N)	1.037	1.061	1.815	1.715	1.020	0.990	1.596	1.786	2.678/ 2.534	2.616/ 2.666	0.0	28.0
	DK	1.092	1.038	1.566	1.777	1.072	1.047	1.561	1.631	2.539/ 2.529	2.650/ 2.555	0.0	0.0

Table S1. Covalent bonds, intra-HBs, distances between heavy atoms and torsion angles of tautomer (T), mono-tautomer (NT), and di-tautomer (TT) forms for all molecules computed at B3LYP/TZVP (in S_0) and TD-B3LYP/TZVP (in S_1) levels of theory.

Table S2. Vibrational frequencies corresponding to O-H stretching and symmetric and asymmetric N-H stretching in S_0 and S_1 states of N form (mono-PT type) and NN form (di-PT type).

		Wavenumber (cm ⁻¹)						
Vibrational mode	State	Mono	o-PT type	Di-PT type				
		BPOH	BP(NH₂)	BP(OH) ₂	BP(NH ₂) ₂	BP(OH)(NH ₂)		
O II stratahing	\mathbf{S}_{0}	3134	—	3071	_	2984		
O-fi stretching	\mathbf{S}_1	2419	—	2338	—	2523		
Δυ		715	_	733	—	461		
Summatria N U stratahing	S ₀	_	3458		3435	3434		
Symmetric N-H stretching	\mathbf{S}_1		2850	—	3104	3066		
Δυ			608		331	368		
A summatria N U stratahing	\mathbf{S}_{0}		3674	—	3678	3681		
Asymmetric N-ri stretching	\mathbf{S}_1		3602	—	3629	3633		
Δv		—	72	—	49	48		

*positive (+) value of Δv corresponded to red-shift.

Figure S2. Calculated vibrational spectra of O-H and N-H stretching in the S_0 (black line) and S_1 (red line) states of tautomer (T), mono-tautomer (NT) and di-tautomer (TT) forms. The O-H stretching is labeled in blue. The N-H stretching for primary amine and secondary amine are labeled in pink and red, respectively.

		Wavenumber (cm ⁻¹)						
Vibrational mode	State	DD(OII)		BP(OH)(NH₂)				
		$BP(OH)_2$	$BP(NH_2)_2$	NT (O)	NT (N)			
	S_0	2832	_	_	2823			
O-H stretching	\mathbf{S}_1	3299	_		3283			
Δv		-467	_		-460			
N II stustskin s	S_0	—	3366	3359	—			
N-H stretching	\mathbf{S}_1	—	3458	3479	—			
Δv		—	-92	-120	—			

Table S3. Vibrational frequencies corresponding to O-H stretching and N-H stretching corresponding to 2^{nd} PT process in S₀ and S₁ states of mono-tautomer (NT) form of di-PT type.

*negative (-) value of Δv corresponded to blue-shift.

Molecule	Bonds	ρ(r)	G(r)	V(r)	H(r)	$\nabla^2 \rho(\mathbf{r})$	E _{HB}
Mono-PT type							
ВРОН	R2	0.065	0.048	-0.066	-0.018	0.118	0.033
BP(NH₂)	R2	0.054	0.042	-0.052	-0.011	0.124	0.026
Di-PT type							
BP(OH ₂)	R2, R4	0.058	0.042	-0.056	-0.014	0.109	0.028
BP(NH ₂) ₂	R2, R4	0.047	0.037	-0.044	-0.007	0.121	0.022
BP(OH)(NH ₂)	R2 (N-H…N)	0.047	0.036	-0.043	-0.007	0.118	0.022
	R4 (O-H…N)	0.075	0.052	-0.078	-0.026	0.107	0.039

Table S4. Bond critical point parameters (in a.u.) in S_1 state corresponding to the intra-HBs of N and NN forms for all molecules.

Table S5. Bond critical point parameters (in a.u.) in S_1 state corresponding to the 2nd PT process of NT form of di-PT type.

Molecule	Form	Bonds	ρ(r)	G(r)	V(r)	H(r)	$\nabla^2 \rho(\mathbf{r})$	E _{HB}
BP(OH ₂)	MK	R4	0.047	0.033	-0.042	-0.009	0.098	0.021
BP(NH₂) ₂	MK	R4	0.032	0.025	-0.026	-0.001	0.096	0.013
BP(OH)(NH₂)	MK (N)	R4 (O-H…N)	0.046	0.033	-0.041	-0.008	0.097	0.021
	MK (O)	R2 (N-H…N)	0.030	0.023	-0.023	-0.0003	0.091	0.012

Malaanla	F		Abs	orption	Emiss	Stokes shift		
Molecule	Form	λ _{abs} , nm	abs, nm f MOs contribution		λ _{emis} , nm	f	(nm)	
Mono-PT type								
ВРОН	Ν	313	0.315	HOMO→LUMO (96%)	336	0.300	23	
	Т				692	0.024	379	
BP(NH₂)	Ν	340	0.263	HOMO→LUMO (97%)	384	0.230	44	
	Т				743	0.017	403	
Di-PT type								
BP(OH) ₂	NN	329	0.370	HOMO→LUMO (97%)	361	0.398	32	
	NT				530	1.37	201	
	TT				460	0.400	131	
BP(NH₂) ₂	NN	362	0.334	HOMO→LUMO (98%)	403	0.321	41	
	NT				623	0.111	261	
	TT				532	0.308	170	
BP(OH)(NH ₂)	NN	350	0.331	HOMO→LUMO (98%)	383	0.342	33	
	NT (O)				539	0.139	189	
	NT (N)				727	0.065	377	
_	TT				547	0.223	197	

Table S6. Calculated maxima wavelengths of absorption (λ_{abs}) and emission (λ_{emis}) spectra with their oscillator strengths (*f*) and molecular orbitals (MOs) contribution as well as Stokes shifts of all molecules computed at TD-B3LYP/TZVP level of theory.

Figure S3. Schematic diagram of HOMO and LUMO energy levels as well as energy gaps (eV) corresponding to emission peaks of all molecules computed at B3LYP/TZVP level of theory.

Figure S4. Potential energy curves corresponding to scanned NCCC torsion of tautomer (T) and mono-tautomer (NT) species of all molecules calculated at TD-B3LYP (black lines) and RI-ADC(2) (red lines) with TZVP basis set.