Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

1

Supplementary Information

NMR Probe Effects on *trans*-Philicity and *trans*-Influence Ladders in Square Planar Pt(II) Complexes

Athanassios C. Tsipis

Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, Ioannina

45110, Greece

Contents	pages
Table S1. ¹ H NMR Hydride Shifts (in ppm vs TMS) for selected <i>trans</i> -[Pt(PMe ₃)(H)(L)] ^{0/+} complexes calculated by the	
PBE0/SARC-ZORA(Pt) \cup 6-31+G(d)(E)/PCM computational protocol in benzene solution and compared to 1 H	
NMR Hydride Shifts calculated by the PBE0/Def2-TZVP (ECP)/COSMOS computational protocol in benzene	
solution and to experimental data available.	S 3
Table S2. $R(Pt-H)$ bond lengths (in Å) for selected trans- $[Pt(PMe_3)_2(H)(L)]^{0/+}$ complexes calculated by the PBEO/SARC-	
ZORA(Pt) \cup 6-31+G(d)(E)/PCM computational protocol and compared to R(Pt-H) bond lengths calculated by	
the PBE0/Def2-TZVP (ECP) computational protocol in the gas phase.	S 3
Table S1 . $\sigma^{iso}(SO)$ ¹ H NMR <i>trans</i> -philicity descriptors (in ppm) for the <i>trans</i> -[Pt(PMe ₃) ₂ (H)L] ^{0/+} complexes calculated at the	
2c-SO-ZORA level of theory.	S4
Table S2 . $\sigma^{iso}(SO)$ ¹³ CH ₃ NMR <i>trans</i> -philicity descriptors (in ppm) for the <i>trans</i> -[Pt(PMe ₃) ₂ (CH ₃)L] ^{0/+} complexes calculated	
at the 2c-SO-ZORA level of theory.	S5
Table S3 . $\sigma^{iso}(SO)$ ¹³ CO NMR <i>trans</i> -philicity descriptors (in ppm) for the <i>trans</i> -[Pt(PMe ₃) ₂ (CO)L] ^{+/2+} complexes	
calculated at the 2c-SO-ZORA level of theory	S6
Table S4 . $\sigma^{iso}(SO)$ ¹⁵ NH ₂ NMR <i>trans</i> -philicity descriptors (in ppm) for the <i>trans</i> -[Pt(PMe ₃) ₂ (NH ₂)L] ^{0/+} complexes calculated	
at the 2c-SO-ZORA level of theory.	S7
Table S5 . $\sigma^{iso}(SO)$ ¹⁷ OH ₂ NMR <i>trans</i> -philicity descriptors (in ppm) for the <i>trans</i> -[Pt(PMe ₃) ₂ (OH ₂)L] ^{+/2+} complexes	
calculated at the 2c-SO-ZORA (SO) level of theory	S8
Table S6 . $\sigma^{iso}(SO)^{35}CI$ NMR <i>trans</i> -philicity descriptors (in ppm) for the <i>trans</i> -[Pt(PMe ₃) ₂ (CI)L] ^{0/+} complexes calculated at	
the 2c-SO-ZORA level of theory	S9
Figure S1 . Linear plots of the $\sigma^{iso}(SO) \times (X = {}^{13}CH_3, {}^{15}NH_2, {}^{35}CI) \text{ vs } P_L \text{ correlations for square planar trans-[Pt(PMe_3)_2(X)L]^{0/+}}$	
$(X = X = CH_3, NH_2, CI)$ complexes calculated by the GIAO(2c-SO-ZORA)/PBEO/TZ2P/COSMO computational	
protocol in benzene solution.	S10
Figure S2. Linear plots of the $\sigma^{iso}(SO) \times (X = CH_3, NH_2, CI)$ shieldings vs R(Pt-X) correlations for square planar trans-	
$[Pt(PMe_3)_2(X)L]^{0/+}$ (X = CH ₃ , NH ₂ , Cl) complexes calculated by the GIAO(2c-SO-ZORA)/PBE0/TZ2P/COSMO	
computational protocol in benzene solution.	S11
Figure S3. Linear plots of the $\sigma^{iso}(SO) \times (X = CH_3, NH_2, CI)$ shieldings vs WBI(Pt-X) correlations for square planar trans-	
$[Pt(PMe_3)_2(X)L]^{0/+}$ (X = CH ₃ , NH ₂ , Cl) complexes calculated by the GIAO(2c-SO-ZORA)/PBE0/TZ2P/COSMO	
computational protocol in benzene solution.	S12
Figure S4. Linear plots of the $\sigma^{iso}(SO) \times (X = CH_3, NH_2, CI)$ shieldings vs Q_{Pt} correlations for square planar trans-	
$[Pt(PMe_3)_2(X)L]^{0/+}$ (X = CH ₃ , NH ₂ , Cl) complexes calculated by the GIAO(2c-SO-ZORA)/PBE0/TZ2P/COSMO	
computational protocol in benzene solution.	S13

S13

Table S1. ¹H NMR Hydride Shifts (in ppm vs TMS) for selected *trans*-[Pt(PMe₃)₂(H)(L)]^{0/+} complexes calculated by the GIAO (SO-ZORA)/PBE0/TZ2P/COSMO computational protocol in benzene solution and compared to ¹H NMR Hydride Shifts given by Kaupp's group³⁰ and to experimental data available.⁴⁰⁻⁴⁴

Complex	$\sigma^{ m iso}({}^1 m H)^{ m a}$	$\delta_{ m calcd}(^1{ m H})^{ m a}$	$\delta_{ m calcd}({}^1{ m H})^{ m b}$	$\delta_{ ext{exptl}}$ (1 H)	Ref.
trans-[Pt(PMe ₃)(H)(H)]	35.3 (35.1) ^c	-3.3 (-3.1) ^c		-2.7	43
trans-[Pt(PMe ₃) ₂ (H)(Cl)]	54.0 (54.1)	-22.0 (-22.1)	-16.2	[-16.2] -16.9	[44], 40 ^d
trans-[Pt(PMe ₃) ₂ (H)(Br)]	51.8 (51.9)	-19.8 (-19.9)	-15.0	-15.6	40
trans-[Pt(PMe ₃) ₂ (H)(CN)]	43.4 (43.3)	-11.4 (-11.3)	-6.7	-7.8	40
trans-[Pt(PMe ₃) ₂ (H)(NCMe)] ⁺	56.9 (57.0)	-24.9 (-15.0)		-18.7	42 ^e
trans-[Pt(PMe ₃) ₂ (H)(SCN)]	50.5 (50.6)	-18.5 (-18.6)	-12.2	-13.3	40
trans-[Pt(PMe ₂)(H)(NO ₂)]	56.8 (56.9)	-24.8 (-24.9)	-19.0	-19.7	40
trans-[$Pt(PMe_3)_2(H)(NO_3)$]	61.6 (61.7)	-29.6 (-29.7)	-23.6	-23.8	40
trans-[Pt(PMe ₃) ₂ (H)(OH)]	54.7 (54.7)	-22.7 (-22.7)		-10.0	42
trans-[Pt(PMe ₃) ₂ (H)(OH ₂)] ⁺	67.0 (67.3)	-35.0 (-35.3)		-25.4	42
<i>trans</i> -[Pt(PMe ₃) ₂ (H)(PMe ₃)] ⁺	44.0 (44.0)	-12.0 (-12.0)		12.8	43
trans-[Pt(PMe ₃) ₂ (H)(Me)]	37.4 (37.3)	-5.4 (-5.3)	-4.2	-3.8 [-2.1]	[41] ^f
<i>trans</i> -[Pt(PMe ₂)(H)(Ph)]	39.8 (39.7)	-7.8 (-7.7)	-6.3	-5.7	

^a ¹H NMR Hydride Shifts calculated at the GIAO (SO-ZORA)/PBE0/TZ2P/COSMO level. ^b ¹H NMR Hydride Shifts calculated by Kaupp's group (taken from Ref. 30). ^c Figures in parentheses are the ¹H NMR Hydride Shifts calculated at the GIAO (SO-ZORA)/PBE0/TZ2P-J/COSMO level of theory. ^d The $\delta_{exptl}(^{1}H)$ data given in Ref. 40 refer to the *trans*-[Pt(PEt₃)₂(H)(Cl)] complexes. ^e The $\delta_{exptl}(^{1}H)$ data given in Ref. 42 refer to the *trans*-[Pt(PPh₃)₂(H)(OH₂)]⁺ and *trans*-[Pt(PPh₃)₂(H)(NCMe)]⁺ complexes. ^f The $\delta_{exptl}(^{1}H)$ data given in Ref. 41 refer to the *trans*-[Pt(PPh₃)₂(H)(Me)] complexes.

Table S2. R(Pt-H) bond lengths (in Å) for selected trans- $[Pt(PMe_3)_2(H)(L)]^{0/+}$ complexes calculated by the PBE0/SARC-ZORA(Pt) \cup 6-31+G(d)(E)/PCM computational protocol and compared to R(Pt-H) bond lengths calculated by the PBE0/Def2-TZVP (ECP) computational protocol in the gas phase.^a

		Δ <i>R</i> (Pt-H)	
Complex	PBE0/SARC-ZORA(Pt) U 6- PBE0/Def2-TZVP (ECP) (gas phase)		
	31+G(d)(E)/PCM(benzene)		
trans-[Pt(PMe ₃) ₂ (H)(Cl)]	1.616	1.565	0.051
trans-[Pt(PMe ₃) ₂ (H)(Br)]	1.620	1.566	0.054
trans-[Pt(PMe ₃) ₂ (H)(CN)]	1.654	1.609	0.045
trans-[Pt(PMe ₃) ₂ (H)(SCN)]	1.625	1.576	0.049
trans-[Pt(PMe ₂)(H)(NO ₂)]	1.627	1.582	0.045
trans-[Pt(PMe ₃) ₂ (H)(NO ₃)]	1.599	1.548	0.051
trans-[Pt(PMe ₃) ₂ (H)(Me)]	1.699	1.636	0.063
trans-[Pt(PMe ₂)(H)(Ph)]	1.693	1.628	0.065
			MO. = 0.053

^a Taken from Ref. 30.

Table S3. $\sigma^{iso}(SO)$ ¹H NMR *trans*-philicity descriptors (in ppm) for the *trans*-[Pt(PMe₃)₂(H)L]^{0/+} complexes calculated at the 2c-SO-ZORA level of theory employing the GIAO(SO)/PBE0/TZ2P/COSMO computational protocol in benzene solution.

Ligand	σ ^{iso} (SO) ¹ H NMR
F-	60.80
H ₂ O	67.02
OCN⁻	63.01
OBr	59.29
NO ₃ -	61.57
OCI-	59.29
CCl ₃ COO ⁻	60.60
CH₃COO ⁻	58.76
HCOO-	58.84
C ₆ H₅COO⁻	58.45
OF-	57.54
OH-	54.68
NO ₂ -	56.79
NCS	54.80
NCMe	56.89
Py	57.60
NCH	57.05
	56.49
NCPh	56.03
N ₃ -	54.92
N ₂	57.97
	53.97
	40.95
	51.60
	52 13
SH-	JE 17
CN-	43.40
CNMe	44 56
NHC	43.91
CNH	43.90
CNPh	43.55
<i>t</i> -Bu⁻	41.37
Ph ⁻	39.83
PMe ₃	44.00
CO	42.34
PPh ₃	43.82
Me⁻	37.40
PH₃	43.01
PF ₃	41.53
SnCl₃⁻	44.07
H-	35.29
B(OH) ₂ -	29.27
BH ₂ -	28.30

Table S4. $\sigma^{iso}(SO)$ ¹³CH₃ NMR *trans*-philicity descriptors (in ppm) for the *trans*-[Pt(PMe₃)₂(CH₃)L]^{0/+} complexes calculated at the 2c-SO-ZORA level of theory employing the GIAO(SO)/PBE0/TZ2P/COSMO computational protocol in benzene solution.

BH2 ⁻ 193.86 Ph ⁻ 215.24 B(OH)2 ⁻ 192.91 Me ⁻ 210.27 CN ⁻ 214.48 F ⁻ 239.83 H ⁻ 201.13 OF ⁻ 233.19 OH ⁻ 232.07 NH2 ⁻ 220.16 OCI ⁻ 233.19 OB ⁻ 233.19
Ph ⁻ 215.24 B(OH) ₂ ⁻ 192.91 Me ⁻ 210.27 CN ⁻ 214.48 F ⁻ 239.83 H ⁻ 201.13 OF ⁻ 233.19 OH ⁻ 232.07 NH ₂ ⁻ 220.16 OCl ⁻ 233.19 OBr 234.79
B(OH) ₂ - 192.91 Me* 210.27 CN* 214.48 F* 239.83 H* 201.13 OF* 233.19 OH* 232.07 NH ₂ * 220.16 OCI* 233.19 OBc 234.79
Me ⁻ 210.27 CN ⁻ 214.48 F ⁻ 239.83 H ⁻ 201.13 OF ⁻ 233.19 OH ⁻ 232.07 NH ₂ ⁻ 220.16 OCI ⁻ 233.19 OBr 234.79
CN ⁻ 214.48 F ⁻ 239.83 H ⁻ 201.13 OF ⁻ 233.19 OH ⁻ 232.07 NH ₂ ⁻ 220.16 OCl ⁻ 233.19 OBr 234.79
F* 239.83 H* 201.13 OF* 233.19 OH* 232.07 NH2* 220.16 OCI* 233.19 OBr 234.79
H ⁺ 201.13 OF ⁻ 233.19 OH ⁻ 232.07 NH₂ ⁻ 220.16 OCI ⁻ 233.19 OBr 234.79
OF- 233.19 OH- 232.07 NH2- 220.16 OCI- 233.19 OBr 234.79
OH ² 232.07 NH ₂ - 220.16 OCI ² 233.19 OBr 234.79
NH2 220.16 OCI 233.19 OBr 234.79
OBr 233.19
1/DI / 1/4 / 4
CI- 201.79
NO ₄ - 229.94
t-Bu ⁻ 223.34
NCS ⁻ 228.17
Br 219.59
N₂ ⁻ 225.45
SH- 214.84
CH ₃ COO ⁻ 232.36
C ₆ H ₅ COO ⁻ 232.16
HČÕO- 231.47
NHC 211.13
NO ₃ - 233.12
CCl₃COO ⁻ 231.15
OCN- 232.53
SCN- 215.77
Py 223.82
CNPh 204.51
NCPh 219.14
NCMe 219.98
CNMe 204.50
NCH 217.93
CNH 202.44
$N\Pi_3$ 219.14
SIICI ₃ 200.02
Π ₂ Ο 225.05
PMe 190.76
N_{2} 211 72
H ₂ S 206.55
PPh₂ 197.60
PH ₃ 176.78
PF ₃ 189.50

Table S5. $\sigma^{iso}(SO)$ ¹³CO NMR *trans*-philicity descriptors (in ppm) for the *trans*-[Pt(PMe₃)₂(CO)L]^{+/2+} complexes calculated at the 2c-SO-ZORA level of theory employing the GIAO(SO)/PBE0/TZ2P/COSMO computational protocol in benzene solution.

Ligand	$\sigma^{\rm iso}({\rm SO})$ ¹³ CO NMR
H ₂ O	48.79
N ₂	42.27
NCH	36.23
OCN-	34.49
NCMe	34.18
NCPh	32.79
NO3 ⁻	29.83
NH ₃	29.62
F ⁻	29.34
Py	28.98
CCI ₃ COO ⁻	28.16
H ₂ S	27.10
HCOO-	25.53
CH ₃ COO ⁻	25.08
NCŠ-	24.61
C ₆ H ₅ COO ⁻	24.17
OCI-	23.72
OBr-	23.15
CI-	22.65
OF-	22.52
Br	22.39
CO	22.10
NO ₂ -	20.63
OH-	19.88
N ₃ ⁻	19.66
PF₃	18.00
CNMe	17.87
CNPh	17.08
SCN-	14.77
PH ₃	13.93
PMe ₃	11.31
NHC	10.69
CNH	10.69
PPh₃	9.73
NH ₂ -	9.40
SH	8.71
CN ⁻	8.33
SnCl ₃ -	2.95
Ph ⁻	-2.13
Me⁻	-2.57
H	-7.85
t-Bu⁻	-9.55
B(OH) ₂ -	-13.76
BH ₂ -	-17.16

Table S6. $\sigma^{iso}(SO)$ $^{15}NH_2$ NMR *trans*-philicity descriptors(in ppm) for the *trans*-[Pt(PMe_3)₂(NH₂)L]^{0/+} complexescalculated at the 2c-SO-ZORA (SO) level of theoryemployingtheGIAO(SO)/PBE0/TZ2P/COSMOcomputational protocol in benzene solution.

Ligand	$\sigma^{\rm iso}({ m SO})$
OH-	322.54
HCOO-	315.45
CH ₃ COO ⁻	317.53
NH ₂ -	313.56
C ₆ H₅COO ⁻	316.72
NO ₃ -	305.93
F-	306.50
Ру	298.64
NH ₃	297.78
H ₂ O	285.89
OBr	305.20
B(OH) ₂ -	311.65
OCI-	304.63
NCH	293.78
OF-	300.35
CCI₃COO⁻	311.66
<i>t</i> -Bu⁻	280.36
OCN-	288.35
NO ₂ -	288.65
N ₂	277.00
N₃ ⁻	284.99
NCS ⁻	290.13
Ph ⁻	277.06
CNH	279.14
CNMe	279.46
Cl-	277.26
PMe ₃	271.20
Me	266.73
PH ₃	266.41
Br	268.73
BH ₂ -	226.80
SCN-	264.58
SH	263.87
H ⁻	255.34
	207.37
	200.50
	208.83
	257.33
	250.14
CNPh	240.05
SnCl-	240.00
DDh.	230.32
$C \cap$	223.03
00	227.70

TableS7. $\sigma^{iso}(SO)$ $^{17}OH_2$ NMRtrans-philicitydescriptors (in ppm) for the trans-[Pt(PMe_3)_2(OH_2)L]^{+/2+}complexes calculated at the 2c-SO-ZORA (SO) level oftheory employing the GIAO(SO)/PBE0/TZ2P/COSMOcomputational protocols in benzene solution.

Ligand	σ ^{iso} (SO) ¹⁷ OH ₂ NMR
H ₂ O	513.76
F	463.62
OCN ⁻	452.51
NO ₃ -	456.87
CCl₃COO [_]	447.87
CH₃COO ⁻	441.37
C ₆ H₅COO ⁻	441.72
N ₂	450.34
HCOO-	441.52
OBr	425.93
NCH	446.24
NH ₃	439.67
OH-	426.28
	423.54
NCS-	431.83
Py	434.83
OF-	419.11
NO ₂ -	417.74
	409.95
NCME	427.00
N ₃ -	402.78
	407.34
	434.02
CINIME	406.90
	411.75
	408.87
	309.45
	372.00
	307.80
PE	383.02
Br	383 52
PH	379.36
CNPh	386 44
SH-	361.08
Me-	362.59
B(OH) ₂ -	350.33
PPh ₂	358.63
PMe ₃	359.46
Ph ⁻	359.72
H-	356.79
SnCl ₃ -	344.63
<i>t</i> -Bu⁻	323.37
BH ₂ -	327.04

Table S8. $\sigma^{iso}(SO)$ ³⁵Cl NMR *trans*-philicity descriptors (in ppm) for the *trans*-[Pt(PMe₃)₂(Cl)L]^{0/+} complexes calculated at the 2c-SO-ZORA (SO) level of theory employing the GIAO(SO)/PBE0/TZ2P/COSMO computational protocol in benzene solution.

Ligand	σ ^{iso} (SO) ³⁵ Cl NMR
F-	1225.20
OBr	1203.85
OCN-	1176.67
OCI-	1202.23
NO ₃ -	1186.38
OH-	1204.76
CH₃COO ⁻	1189.16
OF-	1193.92
C ₆ H₅COO ⁻	1188.74
CCI ₃ COO-	1177.68
HCOO-	1182.18
NO ₂ -	1187.39
NCS-	1173.53
H ₂ O	1096.56
N ₃ -	1160.22
NH ₂ -	1166.19
Py	1129.75
	1129.33
Ph ²	1154.24
BI-	1112.91
N⊓ ₃	1101.90
Me	1137.19
	1097.13
	1129.32
	1120.00
н 8H-	1105.00
BH	1123.03
NCH	1079 90
SCN-	1086 11
B(OH) ₂ -	1117 91
NHC	1096.59
t-Bu ⁻	1094.34
N ₂	1021.80
ĊŇMe	1052.94
CNPh	1041.67
CNH	1037.34
H ₂ S	1002.84
SnCl₃⁻	1005.93
PPh ₃	998.39
PMe ₃	995.56
PH ₃	983.81
CO	989.68
PF ₃	940.66

Figure S1. Linear plots of the $\sigma^{iso}(SO) \times (X = {}^{13}CH_3, {}^{15}NH_2, {}^{35}CI) \text{ vs } P_L$ correlations for square planar *trans*-[Pt(PMe_3)₂(X)L] ${}^{0/+}$ (X = X = CH₃, NH₂, CI) complexes calculated by the GIAO(2c-SO-ZORA)/PBE0/TZ2P/COSMO computational protocol in benzene solution.

Figure S2. Linear plots of the $\sigma^{iso}(SO) \times (X = CH_3, NH_2, CI)$ shieldings *vs* R(Pt-X) correlations for square planar *trans*-[Pt(PMe_3)₂(X)L]^{0/+} (X = CH₃, NH₂, CI) complexes calculated by the GIAO(2c-SO-ZORA)/PBE0/TZ2P/COSMO computational protocol in benzene solution.

Figure S3. Linear plots of the $\sigma^{iso}(SO) \times (X = CH_3, NH_2, CI)$ shieldings *vs WBI*(Pt-X) correlations for square planar *trans*-[Pt(PMe₃)₂(X)L]^{0/+} (X = CH₃, NH₂, CI) complexes calculated by the GIAO(2c-SO-ZORA)/PBE0/TZ2P/COSMO computational protocol in benzene solution.

Figure S4. Linear plots of the $\sigma^{iso}(SO) \times (X = CH_3, NH_2, CI)$ shieldings *vs* Q_{Pt} correlations for square planar *trans*-[Pt(PMe₃)₂(X)L]^{0/+} (X = CH₃, NH₂, CI) complexes calculated by the GIAO(2c-SO-ZORA)/PBE0/TZ2P/COSMO computational protocol in benzene solution.