Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Enhenced UV stability of *N*-halamine-immobilized Fe₃O₄@SiO₂@TiO₂ nanoparticles: synthesis, characteristics and antibacterial property

Danlin Bu, Na Li, Yu Zhou, Hengyu Feng, Fei Yu, Chunxia Cheng, Ming Li, Linghan Xiao* and Yuhui Ao*

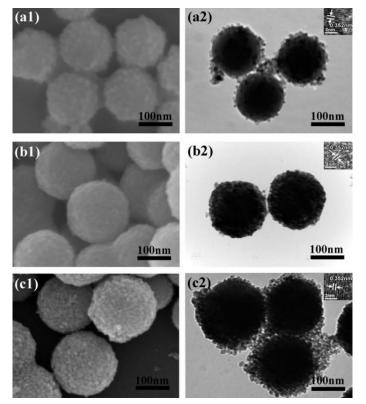

^aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China.
^bAdvanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
^cJilin Province Key La1boratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun 130012, China.
E-mail: xiaolinghan1981@163.com

Table of Contents Pages S2–3 §1. Characterization of Fe₃O₄@SiO₂ with different amounts of tetrabutyl titanate S3 §2. MIC and MBC of *N*-halamine-immobilized Fe₃O₄@SiO₂@TiO₂

1. Characterization of Fe₃O₄@SiO₂ with different amounts of tetrabutyl

titanate

Under the same preparation conditions, the amount of TiO₂ hydrolyzed to the surface of Fe₃O₄@SiO₂ was various with different doses of tetrabutyl titanate (TBOT) which directly led to different shell thickness of TiO₂. Fig. 1S was the SEM (left) and TEM (right) pictures of *N*-halamine-modified Fe₃O₄@SiO₂@TiO₂ nanoparticles that the dosage of TBOT is 0.2 mL, 0.4 mL and 0.6 mL, respectively. As shown in Fig. 1S-a1 and a2, the TiO₂ particles on the surface of SiO₂ were maldistribution and even could not completely cover the SiO₂ layer, which may be due to the low dose of TBOT. Fig. 1S-c1 and c2 were SEM and TEM of F@S@T-0.6 samples. The stacking gap between the TiO₂ nanoparticles was slightly larger, and there were extra single TiO₂ particles outside the sample, and there was a certain agglomeration phenomenon between the F@S@T-0.6 particles, which may be caused by the excessive dose of TBOT. From the SEM and TEM images of F@S@T-0.4 in Fig. 1S-b1 and b2, it was observed that the TiO₂ particles of F@S@T-0.4 were different from the other two, which were dense and the particle distribution is more uniform.

Fig 1S. SEM (left) and TEM (right) pictures of (a1 and a2) F@S@T- 0.2, (b1 and b2) F@S@T-0.4 and (c1 and c2) F@S@T-0.6, illustrated with corresponding sample TiO₂ shell HTEM pictures.

The XRD of *N*-halamine-modified $Fe_3O_4@SiO_2@TiO_2$ nanoparticles with different doses of TBOT is shown in Fig 2S.

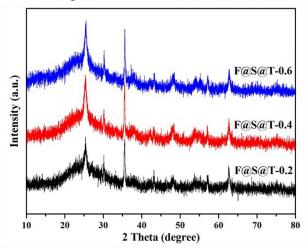


Fig 28. XRD of Fe $_3O_4@SiO_2$ with different amounts of TBOT

§2. MIC and MBC of *N*-halamine-immobilized Fe₃O₄@SiO₂@TiO₂

Bacteria	MIC (mg/mL)	MBC (mg/mL)
	F@S@T-Cl	F@S@T-Cl
S.aureus	0.256	0.520
E.coil	0.510	0.725