Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks

Limin Zhao^{1*}, Huimin Liu¹, Yue Du¹, Xiang Liang¹, Wenju Wang², Hui Zhao¹, Wenzhi Li¹

1. College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059,

PR China

2. School of Energy and Power Engineering, Nanjing University of Science and Technology,

Nanjing 210094, China

Fig. S1 Calculated PXRD pattern of PI-COF-1 based on the space group of P63 /mmc

Fig. S2 Calculated PXRD pattern of PI-COF-1 based on the space group of Cmcm

Table S1 U	Jnit cell p	arameters an	d fractional	atomic	coordinates	for Pl	I-COF-1	calculated	based on
the space g	group of P	6/mmm							

Space group	P6/mmm				
Calculated unit cell	$a = b = 32.9283$ Å, $c = 3.4305$ Å, $\alpha = \beta = 90$ °, $\gamma = 120$ °				
atom	Х	у	Z		
C1	0.36094	0.63906	0.50000		
C2	0.41416	0.58584	0.50000		
C3	0.41118	0.65863	0.50000		
C4	0.43632	0.63435	0.50000		
C5	0.42126	0.51178	0.50000		
C6	0.45736	0.49876	0.50000		
C7	0.45531	0.45531	0.50000		
01	0.37965	0.48294	0.50000		
N1	0.43997	0.56003	0.50000		
N2	0.33333	0.66667	0.50000		
H1	0.34478	0.52599	0.50000		
H2	0.30817	0.56182	0.50000		
НЗ	0.57754	0.57754	0.50000		

Space group	P6 ₃ /mmc				
Calculated unit cell	$a = b = 34.9980$ Å, $c = 6.2645$ Å, $\alpha = \beta = 90$ °, $\gamma = 120$ °				
atom	Х	у	Z		
C1	0.38855	0.69428	0.25		
C2	0.4949	0.74745	0.25		
C3	0.83858	0.91929	0.25		
C4	0.94482	0.97241	0.25		
C5	0.41923	0.6747	0.25		
C6	0.46863	0.69898	0.25		
C7	0.57625	0.8213	0.25		
C8	0.62517	0.83347	0.25		
С9	0.66678	0.78983	0.25		
C10	0.70839	0.83331	0.25		
C11	0.7573	0.84546	0.25		
C12	0.86481	0.89708	0.25		
C13	0.91418	0.92221	0.25		
01	0.56388	0.85044	0.25		
O2	0.76968	0.81633	0.25		
N1	0.54646	0.77323	0.25		
N2	0.78707	0.89354	0.25		
N3	0.33333	0.66667	0.25		
N4	1	1	0.75		
H1	0.41302	0.64149	0.25		
H2	0.48558	0.67823	0.25		
Н3	0.66679	0.75699	0.25		
H4	0.84791	0.85938	0.25		
H5	0.92035	0.89519	0.25		

Table S2 Unit cell parameters and fractional atomic coordinates for PI-COF-1 calculated based on the space group of $P6_3$ /mmc.

Table S3 Unit cell parameters and fractional atomic coordinates for PI-COF-1 calculated based on the space group of Cmcm

Space group	Cmcm			
Calculated unit cell	a = 32.9466 Å, b = 57.0651 Å, c = 6.2388 Å, $\alpha = \beta = \gamma = 90^{\circ}$			
atom	Х	у	Z	
C1	-0.54142	-0.23619	0.75	
C2	-0.62118	-0.2096	0.75	
C3	-0.87894	-0.12368	0.75	
C4	-0.95861	-0.09712	0.75	
C5	-0.54696	-0.21106	0.75	
C6	-0.58381	-0.1985	0.75	
C7	-0.69878	-0.20585	0.75	

C8	-0.72932	-0.18747	0.75
С9	-0.7283	-0.14485	0.75
C10	-0.77085	-0.14578	0.75
C11	-0.80138	-0.12741	0.75
C12	-0.88094	-0.09946	0.75
C13	-0.91819	-0.08734	0.75
C14	-0.53491	-0.29294	0.75
C15	-0.53533	-0.31764	0.75
C16	-0.46683	-0.37145	0.75
C17	-0.47912	-0.39591	0.75
C18	-0.54356	-0.41672	0.75
C19	-0.52089	-0.43752	0.75
C20	-0.53318	-0.46197	0.75
C21	-0.53533	-0.51573	0.75
C22	-0.53488	-0.54041	0.75
C23	-0.41812	-0.24597	0.75
C24	-0.38086	-0.23383	0.75
C25	-0.3344	-0.17267	0.75
C26	-0.29156	-0.16659	0.75
C27	-0.22813	-0.18841	0.75
C28	-0.20826	-0.16667	0.75
C29	-0.16544	-0.16059	0.75
C30	-0.08373	-0.13479	0.75
C31	-0.04693	-0.12222	0.75
C32	-0.5	-0.2776	0.75
C33	-0.5	-0.33078	0.75
C34	-0.5	-0.50262	0.75
C35	-0.5	-0.55573	0.75
01	-0.70716	-0.22661	0.75
O2	-0.793	-0.10665	0.75
O3	-0.4315	-0.36526	0.75
O4	-0.56851	-0.46817	0.75
05	-0.36134	-0.1581	0.75
O6	-0.13848	-0.17516	0.75
N1	-0.65984	-0.19671	0.75
N2	-0.8403	-0.13656	0.75
N3	-0.5	-0.35655	0.75
N4	-0.5	-0.47686	0.75
N5	-0.5	-0.24999	0.75
N6	0	0.08332	1.25
H1	-0.52726	-0.19756	0.75
H2	-0.5819	-0.17965	0.75
Н3	-0.71189	-0.12843	0.75

H4	-0.85364	-0.08906	0.75
Н5	-0.90777	-0.07075	0.75
H6	-0.56502	-0.28984	0.75
H7	-0.56456	-0.32612	0.75
H8	-0.57641	-0.41672	0.75
Н9	-0.56458	-0.50728	0.75
H10	-0.06498	-0.0435	0.75
H11	-0.40772	-0.26258	0.75
H12	-0.35353	-0.24421	0.75
H13	-0.21171	-0.20483	0.75
H14	-0.08178	-0.15364	0.75
H15	-0.52724	0.36427	0.75

Fig. S3 Calculated and experimental PXRD pattern of PMDA-TAPB

Fig. S4 Calculated and experimental PXRD pattern of TFP-DAAQ

Fig. S5 PXRD pattern of PMDA-TAPA prepared with different ILs

Fig. S6 PXRD pattern of PMDA-TAPA prepared with different temperature

Fig. S7 FT-IR of TAPB, PDMA and PMDA-TAPB

Fig. S11 SEM image of COFs (a. PMDA-TAPA, b. PMDA-TAPB, c. TFP-EB, d. TFP-DAAQ)

Fig. S12 TEM image of PMDA-TAPA

