Electronic Supplementary Information

A photostable fluorescent probe based on PET off for the detection of

hydrogen sulfide and its application in bioimaging

Jialu Yang ^a, Caixia Yin ^{a,*}, Ying Wen ^a, Yongbin Zhang^b, Fangjun Huo ^{b,*}

^{*a*} Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China; ^{*b*} Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China. **E*-mail: <u>yincx@sxu.edu.cn</u>; <u>huofj@sxu.edu.cn</u>.

Contents:

I: Material and Methods

II: Figure S1: ¹H MNR (600 MHz) spectrum of Compound 1 in CD₃OD and ¹³C

MNR (150 MHz) spectrum of Compound 1 in DMSO-d₆.

Figure S2: ¹H MNR (600 MHz) spectrum and ¹³C MNR (150 MHz) spectrum of P1

in DMSO- d_6 .

Figure S3: The HR-MS of (a) P1 and (b) the mixture reaction product of P1 and H₂S.

Figure S4: The UV-visible absorption spectra of H_2S (120 μ M) added to the P1.

Figure S5: Fluorescence intensity of P1 + Na₂S (100 μ M) / P1 (10 μ M) at 530 nm at

different pH conditions.

Figure S6: Cell viability estimated by CCK-8 assay with Hela cells.

 Table 1: Comparison of P1 and previously reported response time of the same type

 probes to H₂S.

I: Material and Methods

1.1. Materials and Physical measurements

All the regents and solvents were commercially available. Naphthalene-1,6-diol and ethyl acetoacetate were got from Aladdin Industrial Corporation (Shanghai, China). Amino acids were got from Shanghai Experiment Reagent Co., Ltd (Shanghai, China). Fluorescence spectra were recorded by HITACHI F-7000 fluorescence spectrophotometer. Ultraviolet-visible spectra were detected by Hitachi U-3900 UV spectrophotometer. ¹H NMR and ¹³C NMR data were obtained by Bruker AVANCE-600 MHz NMR spectrometers (Bruker, Billerica, MA). HR-MS determinations were implemented on an AB SCIEX Tripple TOF5600 Instruments. Nikon Ti-S microsystem was used to evaluate the response of probes to H₂S in Hela cells.

Figure S1: ¹H MNR (600 MHz) spectrum of **Compound 1** in CD₃OD and ¹³C MNR (150 MHz) spectrum of **Compound 1** in DMSO-*d*₆.

Figure S1: (a) ¹H MNR (600 MHz) spectrum of Compound 1 in MeOD, (b) ¹³C MNR (150 MHz) spectrum of Compound 1 in DMSO- d_6 .

Figure S2: ¹H MNR (600 MHz) spectrum, ¹³C MNR (150 MHz) spectrum of P1 in DMSO- d_6 and the HR-MS of P1 (c)

(a) ¹H MNR (600 MHz), (b) ¹³C MNR (150 MHz) spectra of **P1** in DMSO- d_6 and (c) the HR-MS of **P1** (c).

Figure S3: The UV-visible absorption spectra of H_2S (120 μ M) added to the P1.

The UV-Vis absorption spectra of **P1** (10 μ M) in the absence or presence of Na₂S (120 μ M) in DMSO: PBS=1:1 (v/v, pH = 7.4).

Figure S4: Fluorescence intensity of $P1 + Na_2S (100 \ \mu M) / P1 (10 \ \mu M)$ at 530 nm at different pH conditions.

Figure S5: The HR-MS of (a) P1 and (b) the mixture reaction product of P1 and H_2S .

Figure S6: Cell viability estimated by CCK-8 assay with RAW 264.7 cells, which were cultured in the presence of 0-20 μ M P1 for 5 and 10 h.

Probe	Structure	Excitation and Emission	Reaction	Probe	Reference
Probe 1		λ _{em} =723nm	20 min	10 µM	Ref (27)
Probe 2	O_2N O_2N O_2 $O_$	λ_{ex} =410nm	40 min	5 μΜ	Ref (28)
		$\lambda_{em} = 514$ nm			
Probe 3	F NO ₂ NO ₂ NO ₂	λ_{ex} =574nm	20 min	10 µM	Ref (29)
		λ_{em} =592nm			
Probe 4	O_2N O_2N O_1NO_2 O_2N	λ_{ex} =370nm λ_{em} =424nm	180 min	30 µM	Ref (30)
Probe 5	O ₂ N NO ₂ CN	λ_{em} =432nm	30 min	10 µM	Ref (31)
Probe 6	O ₂ N NO ₂ O ₂ N NO ₂	λ_{ex} =403nm	15 min	10 μΜ	Ref (32)
		λ_{em} =502nm			

Table S1: Comparison of **P1** and previously reported response time of the same typeprobes to H_2S .

	0 ₂ N	λ_{ex} =430nm			
P1	O ₂ N O	λ_{em} =530nm	10 min	10 µM	This work