Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

In situ design of Cu and Co nanoparticles encapsulated in N-doped graphene with core-shell structure derived 8-hydroxyquinoline complexes for the selective catalytic reduction of NO_x by NH₃

Zhifang Li,^a Jian Yang,^a Xiaoyu Ma,^a Jinxing Cui^{ab}, Yuanyuan Ma,^c Cui Geng^c, Yan

Kang,^c and Changlong Yang^{*a}

^aAddress College of Materials Science and Engineering, Heilongjiang Province Key

Laboratory of Polymeric Composite Material, Qiqihar University, Wenhua Street 42,

Qiqihar, 161006, China

^bAddress College of Materials Science and Engineering, Graphene Functional

Materials Research Laboratory, Qiqihar University, Wenhua Street 42, Qiqihar,

161006, China

^cAddress College of Chemistry and Chemical Engineering, Qiqihar University,

Qiqihar 161006, China

Fig. S1 NH₃-SCR activity and N₂ selectivity of Co@N-Gr-800.

Fig. S2 NH₃-SCR activity of Cu-N-Gr, Co-N-Gr, Cu-N-AC and Co-N-AC.

Fig. S3 Influences of SO₂ on NO_x conversion (A) (a) Cu@N-Gr-800 without SO₂, (b) Co@N-Gr-800 without SO₂, (c) Cu@N-Gr-800 with SO₂, (d) Co@N-Gr-800 with SO₂ at different temperature (B) Cu@N-Gr-800 and (C) Co@N-Gr-800 at 200 $^{\circ}$ C and 350 $^{\circ}$ C for different reaction time.

Table S1 The textural properties of Cu@N-Gr-800 and Co@N-Gr-800

Sample	Surface area (m ² /g)	Average pore diameter (nm)
Cu@N-Gr-800	<5	4.1
Co@N-Gr-800	174	4.2

Fig. S4 FT-IR spectra of (a) 8-Q, (b) Cu-8-Q, (c) Co-8-Q, (d) Cu@N-Gr-800 and (e)

Co@N-Gr-800

Fig. S5 Raman spectra of (a) Cu@N-Gr-800 and (b) Co@N-Gr-800.

Fig. S6 TG/DTA curves of (a) 8-Q, (b) Cu-8-Q and (c) Co-8-Q

The contents of C, H, N, Cu and Co were measured by carbon hydrogen nitrogen elements analysis instrument and ICP-AES. The contents of C, H, N, Cu and Co are as follows.

Found for Cu-8-Q: C, 61.24%; H, 3.80; N, 7.90; Cu, 17.65%. Calc. for C₁₈H₁₄N₂O₂Cu: C, 60.96%; H, 3.95; N, 7.90; Cu, 18.06%.

Found for Co-8-Q: C, 61.69%; H, 3.96; N, 7.95; Co, 16.50%. Calc. for C₁₈H₁₄N₂O₂Co: C, 61.83%; H, 4.0; N, 8.02; Co, 16.89%.

Fig. S7 NH_3 -TPD of CuO and Co_3O_4 .