Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Supramolecular assembly of a 4-(1-naphthylvinyl)pyridyl appended Zn(II) coordination compound for turn-on fluorescence sensing of trivalent metal ions (Fe³⁺, Al³⁺, Cr³⁺) and cell imaging application

Basudeb Dutta,^a Sunanda Dey,^b Kunal Pal,^{c,d} Sambhunath Bera,^a Sanobar Naaz,^a Kuladip Jana,^d Chittaranjan Sinha^{* b} and Mohammad Hedayetullah Mir^{* a}

^aDepartment of Chemistry, Aliah University, New Town, Kolkata 700 156, India.

^bDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India.

^cDepartment of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India

^dDivision of Molecular Medicine and Centre for Translational Research, Bose Institute, Kolkata 700056, India.

To whom correspondence should be addressed. E-mail: <u>crsjuchem@gmial.com</u>, <u>chmmir@gmail.com</u>

 Table S1. Crystal data and refinement parameters for compound 1

Formula	$C_{36}H_{26}N_4S_2Zn$			
fw	644.10			
Crystsyst	Monoclinic			
Space group	<i>C</i> 2/ <i>c</i>			
<i>a</i> (Å)	33.760(4)			
b (Å)	6.1009(6)			
c (Å)	17.523(2)			
$\alpha(\text{deg})$	90			
β (deg)	118.990(4)			
γ(deg)	90			
$V(Å^3)$	3156.9(6)			
Ζ	4			
$D_{\text{calcd}}(g/\text{cm}^3)$	1.355			
μ (mm ⁻¹)	0.942			
F(000)	1328.0			
Crystal Size [mm]	0.12 ×0.11 ×0.10			
Temperature (K)	273(2)			
$\lambda(\text{\AA})$	0.71073			
Data [$I > 2\sigma(I)$]/params	2257/195			
GOF on F^2	1.040			
final <i>R</i> indices $(I > 2\sigma(I))^{a,b}$	<i>R</i> ₁ =0.0333			
	$wR_2 = 0.0860$			
${}^{a}R_{1} = \Sigma F_{o} F_{c} / \Sigma F_{o} , {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$				

Table S2.	Selected	bond	lengths	and	bond	angles	in	1.
			0			0		

Zn01 - N1	2.0278(19)	N2-Zn01-N1-C1	22.1(2)
Zn01 - N2	1.915(2)	N1_a-Zn01-N1-C5	76.6(2)
Zn01 - N1_a	2.0278(19)	Zn01-N1-C1-C2	168.41(19)
Zn01 - N2_a	1.915(2)	N2_a-Zn01-N1-C1	155.0(2)
N1 - Zn01 - N2	107.73(9)	Zn01-N1-C5-H5	11
N2 - Zn01 - N1_a	107.73(9)	S1 - C18- N2	178.2(3)
Zn01 - N1 - C1	123.31(15)	N1 - C5 - C4	123.6(2)
Zn01 - N2 - C18	174.5(2)	N1-C1-H1	118.3
N1 - Zn01 - N1_a	98.38(8)	N1-C5-H5	118.2
N2 - Zn01 - N2_a	120.41(14)	N1 - C5- C4	118.9(2)
Zn01 - N1 - C5	119.23(16)	C13 - C12-C17	88.16(10)
N1 - Zn01 - N2_a	110.27(9)	C7- C8 - C13	121.2(2)
N1_a - Zn01 - N2_a	107.73(9)	C11- C12 - C17	121.6(3)

Symmetry Code: a = 1-x, y, 3/2-z

Fig. S1 TGA plot of 1.

Fig. S2 Powder X-ray diffraction patterns of simulated 1 (black), as-synthesized 1 (blue).

Fig. S3 Calculation of limit of detection (LOD) for M^{3+} ions (a) Cr^{3+} (b) Al^{3+} and (c) Fe^{3+} .

Fig. S4 Benesi–Hildebrand plot for determining the binding constant (K_d) of 1 with Cr^{3+} .

Fig. S5 Benesi–Hildebrand plot for determining the binding constant (K_d) of 1 with Al^{3+} .

Fig. S6 Benesi–Hildebrand plot for determining the binding constant (K_d) of 1 with Fe³⁺.

Fig. S7 Interference studies by various metal ions on M^{3+} sensitivity (a) Cr^{3+} , (b) Al^{3+} and (c) Fe^{3+} .

Fig. S8 Job's plots for the determination of binding stoichiometry of **1** with selective metal ions (a) Cr^{3+} , (b) Al^{3+} and (c) Fe^{3+} .

Fig. S9 ¹H NMR spectrum of compound 1in DMSO-d₆.

Fig. S10 ¹H NMR spectra (in DMSO-d₆) of compound 1 with Al³⁺and partial spectra (inset)of compound 1 with excessAl³⁺(in DMSO-d₆).

Fig. S11 ¹H NMR spectrum (in DMSO-d₆) of compound 1 with Cr^{3+} and partial spectra (inset) of compound 1 with excess Cr^{3+} (in DMSO-d₆).

Fig. S12 ¹H NMR spectra (in DMSO-d₆) of compound 1 with Fe³⁺and partial spectra (inset)of compound 1 with excess Fe³⁺(in DMSO-d₆).

Fig. S13 Change in emission spectrum of 1 (20 μ M) with addition of different metal ions (60 μ M each) in acetone, λ_{ex} , 400 nm.

Fig. S14 Change in emission spectrum of 1 (20 μ M) with addition of different metal ions (60 μ M each) in acetonitrile, λ_{ex} , 400 nm.

Fig. S15 Change in emission spectrum of 1 (20 μ M) with addition of different metal ions (60 μ M each) in dichloromethane, λ_{ex} , 400 nm.

Fig. S16 Change in emission spectrum of 1 (20 μ M) with addition of different metal ions (60 μ M each) in DMF, λ_{ex} , 400 nm.

Fig. S17 Change in emission spectrum of 1 (20 μ M) with addition of different metal ions (60 μ M each) in DMSO, λ_{ex} , 400 nm.

Fig. S18 Change in emission spectrum of 1 (20 μ M) with addition of different metal ions (60 μ M each) in water, λ_{ex} , 400 nm.

Fig. S19 Change in emission spectrum of 1 (20 μ M) with addition of different metal ions (60 μ M each) in THF, λ_{ex} , 400 nm.

Fig. S20 Calibration plot for ion recovery (a) Cr^{3+} , (b) Al^{3+} and (c) Fe^{3+} .

Table S3. Comparison of some parameters of some recently published related research w	orks
---	------

Entry	Sensor Molecule	Fluorescence	Concerned	LOD	Cell	Reference
		Enhancement	Cations		Imaging	
		(fold)				
1		_	Fe ³⁺	_	Yes	1
	F-A-N=					
	HN KAOKANH					
2	HOLDBr	98 (Al ³⁺)	Al ³⁺ , Cr ³⁺ ,	1.18 nM (Al ³⁺),	No	2
	EH_N=~~~	50 (Cr ³⁺)	Fe ³⁺	1.80 nM (Cr ³⁺),		
		$38 (Fe^{3+})$		4.04 nM (Fe ³⁺)		
	~n/sholdn					
	н н					

2	8		A 12+ C 2+) T	2
3		62 (Al ³⁺)	Al ⁵⁺ , Cr ⁵⁺ ,	$1.74 \text{ nM} (\text{Al}^{3+}),$	No	3
		$1.7 (Cr^{3+})$	Fe ³⁺	2.36 μ M (Cr ³⁺),		
		$1.47 (Fe^{3+})$		2.90 μ M (Fe ³⁺)		
4		$31 (Al^{3+})$	$Al^{3+}, Cr^{3+},$	1.34 μ M (Al ³⁺),	Yes	4
		$26 (Cr^{3+})$	Fe ³⁺	2.28 μ M (Cr ³⁺),		
		41 (Fe ³⁺)		1.28 μ M (Fe ³⁺)		
5	0=	1465 (Al ³⁺)	Al ³⁺ , Cr ³⁺ ,	6.97 nM (Al ³⁺).	Yes	5
	С СР НО-СН3	588 (Cr^{3+})	Fe ³⁺	$15.80 \text{ nM} (\text{Cr}^{3+})$		
		$800 (Ee^{3+})$		$14.00 \text{ nM} (\text{Ee}^{3+})$		
	TTTT	000(10)				
	HN O' O' NH					
6	E.N-	$14 (Al^{3+})$	$Al^{3+}, Cr^{3+},$	$0.34 \mu M (Al^{3+}),$	Yes	6
	но-С	$10 (Cr^{3+})$	Fe ³⁺	0.31 μ M (Cr ³⁺),		
	E Plant	21 (Fe ³⁺)		$0.29 \ \mu M \ (Fe^{3+})$		
	YAN YAN					
	HN CON NH					
7	H0	630	A1 ³⁺	2 8 nM	Ves	7
/		050	7 11	2.0 1111	105	/
	5 PC-					
	N N					
	HNLOLOLANH					
8		117 (Fe ³⁺),	$Al^{3+}, Cr^{3+},$	2.53 μ M (Cr ³⁺),	Yes	This work
		130 (Al ³⁺) ,	Fe ³⁺	2.67 μ M (Al ³⁺),		
		107 (Cr ³⁺)		1.9 μ M (Fe ³⁺)		
	Zu ² * N					
	e					
	l î <i>N</i>					

Reference:

- M. H. Lee, H. Lee, M. J. Chang, H. S. Kim, C. Kang and J. S. Kim, *Dyes Pigm.*, 2016, 130, 245.
- 2. S. Dey, S. Sarkar, D. Maity and P. Roy, Sens. Actuators, B,2017, 246, 518.
- 3. S. Paul, A. Manna and S. Goswami, *Dalton Trans.*, 2015,44, 11805.
- 4. D. Das, R. Alam, A. Katarkar and M. Ali, Photochem. Photobiol. Sci., 2019, 18, 242.

- 5. A. Roy, S. Das, S. Sacher, S. K. Mandal and P.Roy, *Dalton Trans.*, 2019, 48, 17594.
- R. Alam, R. Bhowmick, A. S. M. Islam, A. Katarkar, K. Chaudhuri and M. Ali, New J. Chem., 2017,41, 8359.
- 7. A. Roy, R. Mukherjee, B. Dam, S. Dam and P. Roy, New J. Chem., 2018, 42, 8415.