Supporting Information

Heterogeneous Catalysis for the tandem cyclisation of unsaturated alcohols

Lorenzo Seijo, Pierrick Ondet, Sandra Olivero and Elisabet Duñach*
Université de Côte d'Azur, Institut de Chimie de Nice, CNRS, Faculté des Sciences
Parc Valrose, 06108 Nice Cedex 2, France.

1 General Conditions

Amberlyst- 15^{\circledR} hydrogen form was used as catalyst (from Sigma Aldrich, 216320-25G, Lot \# MKBN5224V, P Code 1001537778, CAS 39389-20-3).
All reactions with air or moisture sensitive reagents were conducted in dried glassware under an atmosphere of nitrogen. 3,4-dihydro-2H-pyran was used as received without further purification. Tetrahydrofuran (THF) was distilled from sodium/benzophenone, 1,2dichloroethane $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}$) was dried by distillation over CaH_{2}. MeCN and MeNO_{2} (from Sigma Aldrich, HPLC quality) were used as received without further purification. Solvents for flash and thin layer chromatography [petroleum ether] (PE) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were used as received without further purification. Reactions were monitored by analytical Thin Layer Chromatography (TLC), which was performed on 0.20 mm precoated silica plates (Silica gel 60, F_{254}, Macherey-Nage). Detection of non UV-active substances was carried out by staining with p-anisaldehyde ($0.7 \mathrm{~mL} p$-anisaldehyde, 1.7 mL acetic acid and 9.5 mL conc. sulfuric acid in 250 mL ethanol), and subsequent heating (heat gun, ca. $150{ }^{\circ} \mathrm{C}$). Separations via column chromatography were carried out on a CombiFlash ${ }^{\circledR}$ Rf+ (Teledyne Isco, USA), using CHROMABOND ${ }^{\circledR}$ Flash columns (Macherey-Nagel GmbH \& Co. KG, Germany).
NMR spectra presented $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ were recorded on a Bruker AV-500, AV-400 and AV-200 spectrometer at a temperature of 300 K . Chemical shifts (δ) are given in parts per million (ppm) and refer to the residual proton signal of the used solvent. In ${ }^{1} \mathrm{H}$-spectra the CDCl_{3} residual peak was applied as an internal standard with a chemical shift of 7.26 ppm . The DMSO-d ${ }^{6}$ residual peak was applied as an internal standard with a chemical shift of 2.54. ${ }^{13} \mathrm{C}$-spectra were calibrated according to the deuterium-coupled signals of the used solvent
$\left(\mathrm{CDCl}_{3}=77.16 \mathrm{ppm}, \mathrm{DMSO}-\mathrm{d}^{6}=40.45 \mathrm{ppm}\right)$. Spectral splitting patterns are designated as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), m_{c} (centered multiplet). Infrared spectra were recorded on a Jasco FT/IR-4600 spectrometer. Samples were analyzed directly in substance with the attenuated total reflexion method (ATR). Absorption maxima are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and characterised with the following symbols, according to their form and intensity: s (strong), m (medium), w (weak), b (broad). Analytical GC analyses were performed on a Shimadzu GC-2025 capillary gas chromatograph. Analytical GC/MS analyses were performed on a Shimadzu QP2010S-MS chromatograph (EI, 70 eV) equipped with a SLB-5ms capillary column (thickness: 0.25 mm , length: 30 m , inside diameter: 0.25 mm). High resolution mass spectrometry (HRMS) was performed on a mass spectrometer LTQ-Orbitrap hybrid Exactive Plus mass spectrometer. Compounds were analyzed in loop injection mode in positive ESI (Electrospray ionization) and APGC (Atmospheric Pressure Gas Chromatography).

2 Experimental Procedures

2.1 Synthesis of the starting materials

2.1.1 Synthesis of heterogeneous catalyst SPEEK-OH and (SPEEK) $\mathbf{3}_{3}-\mathrm{Bi}$

SPEEK-CI (sulfonation degree 100\%) was synthesized from PEEK Solvay KT-820 NT (DP $=70$) in agreement with the literature. ${ }^{1}$
(SPEEK) $)_{3}-\mathrm{Bi}$ and SPEEK-OH (sulfonation degree 100%) were synthesized from SPEEK-CI in agreement with the literature. ${ }^{1}$

SPEEK-CI:

${ }^{1}$ H RMN (400 MHz , DMSO-d ${ }^{6}$): 7.86-7.72 (m, 4H), 7.51 ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26-7.00 (m, $6 \mathrm{H})$. IR (cm ${ }^{-1}$): 1657, 1592, 1465, 1383, 1260, 1222, 1171, 932, 758.

SPEEK-OH:

${ }^{1}$ H RMN (400 MHz , DMSO-d ${ }^{6}$): $\delta 7.84-7.72$ ($\mathrm{m}, 4 \mathrm{H}$), 7.51 ($\mathrm{d}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24-6.97 (m, $6 \mathrm{H})$. IR (cm${ }^{-1}$): 3372, 1636, 1601, 1483, 1225, 1170, 1041, 930, 861.

Acid-Base Titration of SPEEK-OH (51 mg, MW = $368 \mathrm{~g} / \mathrm{mol}$) in water ($\mathrm{NaOH} \mathbf{0 , 0 1 M}$):

One function $\mathrm{RSO}_{3} \mathrm{H}$ by PEEK monomer

(SPEEK) ${ }_{3} \mathrm{Bi}$:

RMN ${ }^{1} \mathrm{H}$ (400 MHz, DMSO-d ${ }^{6}$): 7,85-7,73 (m, 4H), 7,50 (d, 1H), 7,26-6,99 (m, 6H) IR (cm ${ }^{-1}$) : 1625, 1578, 1460, 1222, 1147, 1130, 1088, 1009, 872, 828.

2.1.2 Synthesis of dihydropyranyl derivatives 1a-I

The starting dienols $\mathbf{1 a - d}$, $\mathbf{1 f}$ and $\mathbf{1 g}$-I were prepared in agreement with those reported in the literature. ${ }^{2}$

Synthesis of 1-(3,4-dihydro-2H-pyran-6-yl)-2,2,5-trimethyl-1-phenylhex-4-en-1ol (1e)

2,2,5-trimethyl-1-phenylhex-4-en-1-one A was prepared in agreement with those reported in the literature. ${ }^{3}$

To a 2 M solution of 3,4-dihydro-2H-pyran (1.2 eq. $0.48 \mathrm{~g}, 5.60 \mathrm{mmol}, 0.47 \mathrm{~mL}$) in anhydrous THF, tert-BuLi (1.9 M in pentane, $1.0-1.2$ eq.) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to $-5^{\circ} \mathrm{C}$ and stirred at this temperature for 3 hours, before being recooled to $-78{ }^{\circ} \mathrm{C}$, followed by addition of 2,2,5-trimethyl-1-phenylhex-4-en-1-one $\mathbf{A}(1.0$ eq., $1.012 \mathrm{~g}, 4.68 \mathrm{mmol}$).). The solution was slowly warmed to room temperature and stirred for an additional $2-3$ hours. Then 5 mL of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution were added, the forming precipitate was dissolved in water and the aqueous phase was extracted with ether ($3 \times 50 \mathrm{~mL}$). The organic extracts were washed with brine, dried over MgSO_{4} and the solvent was removed in vacuo. The residue was purified via flash column chromatography on $\mathrm{Et}_{3} \mathrm{~N}$ basified silica gel to afford $\mathbf{1 e}$ in 53% yield.

The crude product was isolated as a yellow oil ($0.74 \mathrm{~g}, 2.48$ $\mathrm{mmol}, 53 \%)$. 1e: ${ }^{1} \mathrm{H}$ RMN $\left(\mathrm{CDCl}_{3}\right): 7.68-7.19(\mathrm{~m}, 5 \mathrm{H}) 5.28-$ $5.24(\mathrm{t}, 1 \mathrm{H}), 5.11-5.09(\mathrm{t}, 1 \mathrm{H}), 4.10-.99(\mathrm{t}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}$, OH), 2.35-2.30 (m, 1H), 2.08-2.01 (q, 2H), 1.82-1.80 (m, $3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) 1.57(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ RMN (50 MHz, CDCl_{3}): 158.8, 144.0, 133.9, 127.7, 127.3, 126.9, 122.3, 98.0, 81.9, 66.2, 48.0, 36.7, 26.5, 24.7, 23.2, 22.5, 20.7, 18.4. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3569(\mathrm{~b}, \mathrm{OH}), 2962$ (m), 2930 (m), 2854 (m), 1667 (m), 1449 (m), 1069 (s), 915 (s), 766 (m), 706 (s). ESI-HRMS: m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{2}$ [MH] ${ }^{++}$: 301.2162, found: 301.2161.

2.2 Cyclisation products 2a-h, 3i-I and 4i-I

General procedure 1: Amberlyst-15 catalysed cyclisation reaction

Amberlyst-15 was added to a 0.1 M solution of the cyclisation precursor $\mathbf{1 a} \mathrm{I}$ in MeCN at $20{ }^{\circ} \mathrm{C}$ and the reaction was followed by GC. Upon completion, the reaction was quenched by addition of a saturated aqueous NaHCO_{3} solution. Amberlyst- 15 was filtered off. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography afforded the corresponding products.

2.2.1 Solvent, temperature and dilution screening for the polycyclisation of 1a

Influence of the solvent

Table 1. Solvent screening for the cyclisation of $\mathbf{1 a}$ into $\mathbf{2 a}$.

	$\frac{\text { Cat. (2 }}{\text { Solve }}$		
Solvent	t (h)	Conv. 1a	Yield 2a
$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}_{2}$	1	> 95 \%	51\%
$\mathrm{CH}_{\mathrm{x}} \mathrm{Cl}_{2}$	1	> 95%	50\%
MeNO_{2}	1	> 95 \%	52\%
Toluene	16	> 95%	50\%
Cyclohexane	16	> 95%	50\%
MeCN	1	> 95%	63\%
MeCN + $20 \mathrm{~mol} \%$ DIPEA	16	No conversion	-
DMSO	16	No conversion	-

DMF	16	No conversion	-
1,4-dioxan	1	$>95 \%$	44%
THF	1	$>95 \%$	37%
NMP	16	No conversion	-
$\mathrm{H}_{2} \mathrm{O}$	16	No conversion	-

Conditions: Amberlyst-15 (23 wt\% with respect to 1a), $20{ }^{\circ} \mathrm{C}$, [1a] = 0,1 M. GC-FID yields were determined using dodecane as internal standard.

Influence of the temperature

Figure 1. Temperature screening for the cyclisation of $\mathbf{1 a}$ into $\mathbf{2 a}$.

$[1]=0.1 \mathrm{M}, 27 \mathrm{wt} \%$ of Amberlyst-15 with respect to 1a, MeCN.
Influence of the amount of Amberlyst-15
Figure 2. Influence of the catalyst ratio in the cyclisation of 1a into 2a.

Conditions: Amberlyst-15 (wt\% according to 1a), [1] = $0.1 \mathrm{M}, 20^{\circ} \mathrm{C}$, MeCN. GC-FID yields were determined using dodecane as internal standard.

Influence of the concentration of 1

Figure 3. Influence of the concentration of [1a].

Conditions: Amberlyst-15 (27 wt\% with respect to 1a), $20{ }^{\circ} \mathrm{C}$, MeCN. GC-FID yields were determined using dodecane as internal standard.

Recycling Amberlyst-15 kinetic studies

Recycling Amberlyst-15 Procedure: After cycloisomerisation process, Amberlyst-15 was filtered off, washed with 1 N HCl in water, with ethanol 96%, dried at $101{ }^{\circ} \mathrm{C}$ during several hours and reused

Figure 4. Catalyst recycling test for the polycyclisation of $\mathbf{1 a}$.

Conditions: $\mathrm{MeCN}, 20^{\circ} \mathrm{C},[\mathbf{1 a}]=0.1 \mathrm{M}, 27 \mathrm{wt} \%$ of Amberlyst-15 with respect to $\mathbf{1 a}$.

2.2.2 Cyclisation products 2a-h

(\pm)-(1S,4S,7S)-1,3,3-trimethyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (anti-2a)

Compound anti-2a was synthesized according to general procedure 1 starting from dienol $\mathbf{1 a}(100 \mathrm{mg}, 0.47 \mathrm{mmol})$ in MeCN at room temperature, Amberlyst-15 (27 wt\% with respect to 1a, $0.12 \mathrm{mmol}, 37 \mathrm{mg}$) were added and the mixture was stirred for 1 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded anti-2a $(64 \mathrm{mg}$, $0.30 \mathrm{mmol}, 64 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.03(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, 1.46-1.49 (m, 1H), 1.51-1.64 (m, 6H), 1.69-1.74 (m, 1H), 1.78-1.81 (m, 1H), 2.09-2.11 (m, 1H), 2.33 (bs, 1H), 3.38$3.43\left(\mathrm{~m}_{c}, 1 \mathrm{H}\right)$, 3.74-3.77 (m, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}^{(125 \mathrm{MHz} \text {, }}$ $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.2,21.0,21.3,26.5,27.2,29.2,29.2,33.9,47.0,64.8,77.4,85.3,86.9$. IR (neat): $\tilde{v}_{\left(\mathrm{cm}^{-1}\right)}=2695(\mathrm{~m}), 2932(\mathrm{~m}), 2857(\mathrm{w}), 1442(\mathrm{w}), 1376(\mathrm{~m}), 1200(\mathrm{~m}), 1178$ (m), 1100 (s), 1074 (s), 989 (s), 909 (s). APGC-HRMS: m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}]^{++}$: 210.1624, found: 210.1624. CAS number: 2093246-02-5. The experimental data are in accordance with those reported in the literature. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.28$ (s, 3H), $1.55(\mathrm{bs}, 3 \mathrm{H}), 1.68(\mathrm{bs}, 3 \mathrm{H}), 1.55-2.09(\mathrm{~m}, 8 \mathrm{H}), 2.13(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.00\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.1\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 4.79\left(\mathrm{t},{ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.09-5.16\left(\mathrm{~m}_{c}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ 17.6, 20.0, 22.4, 23.1, 25.7, 25.8, 40.2, 66.3, 73.6, 94.1, 124.5, 131.7, 157.2. IR (neat): \tilde{v} $\left(\mathrm{cm}^{-1}\right)=3464(\mathrm{~b}, \mathrm{OH}), 2967(\mathrm{~m}), 2927(\mathrm{~m}), 2850(\mathrm{~m}), 1670(\mathrm{~m}), 1985(\mathrm{~s}), 918$ (s). ESIHRMS: m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{MH}]^{++}: 211.1693$, found: 211.1693. CAS number: 1972655-81-4. The experimental data are in agreement with those reported in the literature. ${ }^{2}$
(\pm)-(1R,4S,7S)-3,3-dimethyl-1-phenyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (anti-2b)
anti-2b
Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$
Molecular Weight: 272,39

Compound anti-2b was synthesized according to general procedure 1 starting from dienol $\mathbf{1 b}(102 \mathrm{mg}, 0.37 \mathrm{mmol})$ in MeCN at room temperature, Amberlyst-15 (27 wt\% with respect to 1b, $0.09 \mathrm{mmol}, 29.43 \mathrm{mg}$) was added and the mixture was stirred for 4 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded anti-2b $(69 \mathrm{mg}$, $0.26 \mathrm{mmol}, 69 \%$) as a white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.55-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.09(\mathrm{~m}, 3 \mathrm{H})$, $3.85-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.49(\mathrm{~m}$, $1 \mathrm{H}), 2.40-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.36$ (m, 4H), 1.30 (s, 6H), $1.13-0.92$ (m, 1H). ${ }^{13}$ C-NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=139.34,127.68,126.76,126.27,88.77,88.53,77.67,64.73,48.43$, 35.49, 29.70, 29.51, 27.80, 26.35, 22.12, 21.00. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2965(\mathrm{w}), 2938(\mathrm{~m})$, 2859 (w), 1444 (w), 1276 (w), 1092 (m), 1075 (m), 1034 (s), 759 (s), 699 (s). ESI-HRMS: m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{MH}]^{+}$: 273.1855 , found: 273.1841. CAS number: 1972656-08-8. The experimental data are in agreement with those reported in the literature. ${ }^{2}$
(\pm)-(1S,4S,7S)-1-ethyl-3,3-dimethyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'pyran] (anti-2c) and (\pm)-(1S,4S,7R)-1-ethyl-3,3-dimethyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (syn-2c)

Compounds 2c were synthesized according to general procedure 1 starting from dienol $\mathbf{1 c}$ ($101 \mathrm{mg}, 0.45 \mathrm{mmol}$) in MeCN at room temperature, Amberlyst-15 ($27 \mathrm{wt} \%$ with respect to 1c, $0.11 \mathrm{mmol}, 35.4 \mathrm{mg}$) was added and the mixture was stirred for 2 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded anti-2c (56 mg , $0.25 \mathrm{mmol}, 59 \%$) as a pale yellow oil and syn-2c (3 mg , $0.013 \mathrm{mmol}, 5 \%$) as white crystals. Anti-2c: ${ }^{1} \mathrm{H}-\mathrm{NMR}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.96-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.43$ (m, 1H), 2.48 (s, 1H), 2.31 - $2.15(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.49(\mathrm{~m}$, $11 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.01\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]\right.$ = 88.1, 87.43, 77.36, 64.75, 47.19, 30.59, 29.29, 29.26, 27.35, 26.62, 23.02, 21.14, 21.09, 8.69. IR (neat): $\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)=2962(\mathrm{~m}), 2934(\mathrm{~m}), 2361(\mathrm{w}), 1456(\mathrm{~m}), 1377(\mathrm{~m}), 1273(\mathrm{~m})$, 1195 (m), 1175 (m), 1100 (s), 1076 (s), 1042 (s), 973 (s), 910 (s), 884 (s), 856 (s). CAS number: 1972656-05-5.Syn-2c: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ [ppm] = 3.92 - 3.76 (m, 1H), 3.53 (td, $\left.{ }^{3} J=11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.90-1.34(\mathrm{~m}, 12 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=88.91,88.04$, $78.75,64.91,44.94,29.95,28.79,27.99,26.50,22.50,21.72,20.95,8.84$. IR (neat): \tilde{v} (cm^{-} ${ }^{1}$) $=2955$ (s), 2929 (s), 2849 (m), 2362 (m), 1438 (w), 1354 (w), 1239 (m), 1104 (s), 1078 (s), 1051 (s), 972 (s), 917 (s). APGC-HRMS: m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}]^{++}: 224.1776$, found:
224.1776. CAS number: 1972656-04-4. The experimental data are in agreement with those reported in the literature. ${ }^{2}$
(\pm)-(1S,4S,7S)-1,3,3,6,6-pentamethyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'pyran] (anti-2d)

Compound anti-2d was synthesized according to general procedure 1 starting from dienol $\mathbf{1 d}(102 \mathrm{mg}, 0.43 \mathrm{mmol})$ in MeCN at room temperature, Amberlyst-15 ($27 \mathrm{wt} \%$ with respect to 1d, $0.11 \mathrm{mmol}, 33.5 \mathrm{mg}$) was added and the mixture was stirred for 4 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded anti-2d (59 mg , $0.25 \mathrm{mmol}, 58 \%$) as a pale yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.89-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.37(\mathrm{~m}, 1 \mathrm{H})$, $2.43\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.51$ (m, 7H), 1.32 (s, 3H), 1.31 (s, 3H), 1.12 (s, 3H), 1.10 (s, 3H), 0.97 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=89.52$, 88.77, 77.54, 64.25, 47.60, 40.99, 36.57, 30.13, 29.60, 29.12, 27.85, 26.56, 24.33, 21.08, 11.39. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2934(\mathrm{~m}), 2860(\mathrm{w}), 1447(\mathrm{w}), 1375(\mathrm{~m})$, , $1042(\mathrm{~m}), 1092(\mathrm{~s})$, 1082 (s), 1071 (s), 987 (s). APGC-HRMS: m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{MH}]^{++}$: 239.2006, found: 239.2006. CAS number: 2093246-03-6. The experimental data are in agreement with those reported in the literature. ${ }^{2}$
(\pm)-(1R,2'S,4S)-3,3,6,6-tetramethyl-1-phenyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (anti-2e)

anti-2e
Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}$ Molecular Weight: 300,44

Compound anti-2e was synthesized according to general procedure 1 starting from dienol $\mathbf{1 e}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in MeCN at room temperature, Amberlyst-15 (27 wt\% with respect to 1e, $0.08 \mathrm{mmol}, 26.16 \mathrm{mg}$) was added and the mixture was stirred for 2 h . Purification by flash chromatography ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded anti-2e (72 mg , $0.24 \mathrm{mmol}, 72 \%)$ as a white solid. TLC: $\mathrm{Rf}=0.78\left(\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}\right.$ $=95: 5)$, [p-anisaldehyde]. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $[\mathrm{ppm}]=7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.61$ (s, 1H), $2.03-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.82(\mathrm{~d}, 2 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}$, $3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=138.4,128.0,127.1$, 126.5, 91.8, 91.4, 64.5, 48.1, 43.3, 37.1, 30.7, 30.5, 29.8, 28.2, 26.9, 24.3, 21.3. IR (neat): $\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)=2960(\mathrm{w}), 2942(\mathrm{~m}), 2863(\mathrm{w}), 1450(\mathrm{w}), 1271(\mathrm{w}), 1090(\mathrm{~m}), 1077(\mathrm{~m}), 1037(\mathrm{~s})$, 760 (s), 703 (s). ESI-HRMS: m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{MH}]^{++}$: 301.2162, found: 301.2161.

X-ray crystal structure of anti-2e (CCDC number 1979084)

(\pm)-1S,4S,7S)-1,3,3-trimethyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (anti-2f) and (\pm)-(1S,4S,7R)-1,3,3-trimethyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (syn-2f)

Compounds $2 f$ were synthesized according to general procedure 1 starting from dienol $1 f$ (103 $\mathrm{mg}, 0.52 \mathrm{mmol}$) in MeCN at room temperature, Amberlyst-15 (27 wt\% with respect to 1f, 0.13 mmol , 41.2 mg) was added and the mixture was stirred for 2 h. Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}$ $=95: 5$) afforded anti-2f ($22.1 \mathrm{mg}, 0.115 \mathrm{mmol}, 22 \%$) as a pale yellow oil and syn-2f ($52.5 \mathrm{mg}, 0.267$ $\mathrm{mmol}, 51 \%$) as a pale yellow oil. Anti-2f: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ [ppm] = 1.07 (s, 3H), 1.22 (s, $3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.78(\mathrm{~m}$, 3H), 1.84-2.05 (m, 4H), 2.22-2.26 (m, 1H), 3.65-3.70 (m, 1H), 3.88-3.91 (m, 1H). ${ }^{13}$ C-NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.8,23.1,27.1,28.2,28.4,29.6,34.0,52.6,67.1,77.7,84.8$, 94.2. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2965(\mathrm{~m}), 2932(\mathrm{w}), 2871(\mathrm{w}), 1460(\mathrm{w}), 1377(\mathrm{~m}), 1175(\mathrm{~m}), 1080$ (s), 917 (m). APGC-HRMS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{MH}]^{+}: 197.1542$, found: 197.1532. CAS number: 1972656-01-1. Syn-2f: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}]=1.12(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}$, $3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.50(\mathrm{~m}, 1 \mathrm{H})$, 1.52-1.58(m, 2H), 1.71-1.78(m,3H), 1.80-1.92 (m, 2H), 1.95-2.01 (dt, ${ }^{3} \mathrm{~J}=12.4 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.78-3.82$ (dt, ${ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95-$ 3.99 (m, 1H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=15.3,21.4,25.9,28.1,28.5,29.6,33.1$, 51.0, 68.2, 79.3, 85.0, 94.8. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2965(\mathrm{~m}), 2929(\mathrm{~m}), 2860(\mathrm{w}), 1457(\mathrm{w})$, 1375 (m), 1240 (w), 1121 (w), 1090 (s), 1059 (s), 914 (s). APGC-HRMS: m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{++}$: 195. 1385, found: 195.1398. CAS number: 1972656-00-0. The experimental data are in agreement with those reported in the literature. ${ }^{2}$
(\pm)-(1R,4S,7S)-3,3-dimethyl-1-phenyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (anti-2g) and (\pm)-(1R,4S,7R)-3,3-dimethyl-1-phenyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (syn-2g)

Compounds 2 g were synthesized according to general procedure 1 starting from dienol $\mathbf{1 g}$ (101 mg , 0.39 mmol) in MeCN at room temperature, Amberlyst15 ($27 \mathrm{wt} \%$ with respect to $\mathbf{1 g}, 0.10 \mathrm{mmol}, 30.73 \mathrm{mg}$) was added and the mixture was stirred for 2 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded anti-2g (21 mg, $0.081 \mathrm{mmol}, 21 \%$) as a pale yellow oil and syn- 2 g ($63 \mathrm{mg}, 0.24 \mathrm{mmol}, 62 \%$) as white crystals. Anti-2g: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ [ppm] $=7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 3 \mathrm{H}), 3.84$ $-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.28-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.82-0.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]$ $=139.15,127.72,126.89,125.72,96.58,87.50,77.94,67.58,54.31,34.71,30.07,28.49$, 28.41, 26.24, 23.67. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2968(\mathrm{~m}), 2941(\mathrm{~m}), 1446(\mathrm{w}), 1271(\mathrm{w}), 1079(\mathrm{~s})$, 1032 (m), 984 (m), 849 (m), 758 (s), 699 (s). CAS number: 1972656-09-9. Syn-2g: ${ }^{1}$ H-NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.62-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 3 \mathrm{H}), 3.67\left(\mathrm{dt},{ }^{3} \mathrm{~J}=8.1,7.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.42-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.52(\mathrm{~m}, 10 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 3 \mathrm{H})$, $1.26-1.10(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=138.19,127.81,127.33,126.99$, 96.59, 87.70, 80.04, 68.19, 52.96, 30.98, 29.85, 28.50, 28.25, 25.01, 21.43. IR (neat): \tilde{v} $\left(\mathrm{cm}^{-1}\right)=2969(\mathrm{~m}), 2925(\mathrm{w}), 2862(\mathrm{w}), 1446(\mathrm{~m}), 1377(\mathrm{~m}), 1084(\mathrm{~m}), 1037(\mathrm{~m}), 981(\mathrm{~m})$, 967 (s), 757 (s), 698 (s). APGC-HRMS: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}]^{++}: 258.1624$, found: 258.1623. CAS number: 1972656-10-2. The experimental data are in accordance with those reported in the literature. ${ }^{2}$
(\pm)- ($1 \mathrm{~S}, 4 \mathrm{~S}, 7 \mathrm{~S}$)-1,3,3,6,6-pentamethyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (anti-2h) and (\pm)-(1S,4S,7R)-1,3,3,6,6-pentamethyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (syn-2h).

Compounds $\mathbf{2 h}$ were synthesized according to general procedure 1 starting from dienol $\mathbf{1 h}$ ($102 \mathrm{mg}, 0.45 \mathrm{mmol}$) in MeCN at room temperature, Amberlyst-15 ($27 \mathrm{wt} \%$ with respect to $\mathbf{1 h}, 11.4 \mathrm{mmol}, 35.7 \mathrm{mg}$) was added and the mixture was stirred for 2 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded anti- 2 h (17 mg , $0.076 \mathrm{mmol}, 17 \%$) as a pale yellow oil and syn-2h (51 mg , $0.228 \mathrm{mmol}, 50 \%$) as a pale yellow oil. Anti-2h: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.97-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.78-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.62(\mathrm{~m}, 6 \mathrm{H}), 1.30$ (s, 6H), $1.12(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=96.29$, 87.81, 77.62, 65.84, 52.92, 41.02, 38.24, 31.80, 29.36, 28.69, 26.75, 26.30, 24.12, 11.77. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2964(\mathrm{~m}), 2865(\mathrm{w}), 1451(\mathrm{w}), 1379(\mathrm{~m}), 1159(\mathrm{w}), 1077(\mathrm{~s}), 978(\mathrm{w})$,
$926(\mathrm{~m})$, 896 (m). CAS number: 1972656-13-5. Syn-2h: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ [ppm] $=3.87-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42-$ $1.32(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}]=95.30,89.21,79.24,65.17,49.73,38.88,37.31,31.06,29.35,28.25,26.82,26.07$, 24.38, 10.35. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2955(\mathrm{~m}), 2858(\mathrm{w}), 1467(\mathrm{w}), 1374(\mathrm{~m}), 1080(\mathrm{~s}), 1054$ (m), $885(\mathrm{~m})$. APGC-HRMS: m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{MH}]^{+}$: 225.1855 , found: 225.1855. CAS number: 1972656-12-4. The experimental data are in agreement with those reported in the literature. ${ }^{2}$

2.2.3 Cyclisation products $3 \mathrm{i}-\mathrm{I}$ and $4 \mathrm{i}-\mathrm{I}$

(\pm)-(1R,2R,4R)-1,4-dimethyltetrahydro-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'-pyran] (3i) and (\pm)-7,10-dimethyl-1-oxaspiro[5.5]undec-9-en-7-ol (4i)

Compound $\mathbf{3 i}$ and $\mathbf{4 i}$ were synthesized according to general procedure 1 starting from dienol 1i (100 $\mathrm{mg}, 0.51 \mathrm{mmol}$) and Amberlyst-15 ($27 \mathrm{wt} \%$ with respect to 1i, $12.7 \mathrm{mmol}, 42.2 \mathrm{mg}$) in MeCN stirred at room temperature for 4 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded 3 i as a pale yellow oil ($12 \mathrm{mg}, 0.06 \mathrm{mmol}, 12 \%$) and $4 \mathbf{i}$ (34 $\mathrm{mg}, 0.173 \mathrm{mmol}, 34 \%$) as a pale yellow oil. $3 \mathbf{i}$: ${ }^{1} \mathrm{H}-$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=3.83\left(\mathrm{dd},{ }^{3} \mathrm{~J}=\right.$ 11.1, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.55-3.31$ (m, 1H), $2.50-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.40(\mathrm{~m}, 11 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=87.26,83.53,83.22,65.76,46.03$, 38.12, 32.48, 31.95, 26.25, 22.24, 19.14, 17.20. IR (neat): $\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)=2935(\mathrm{~m}), 2860(\mathrm{w})$, 1443 (w), 1375 (m), 1233 (m), 1207 (m), 1132 (m), 1083 (s), 1067 (s), 1036 (m), 998 (m), $902(\mathrm{~m})$, 861 (s). ESI-HRMS: m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{MH}]^{+}$: 197.1537, found: 197.1536. CAS number: 2093246-05-8. The experimental data are in agreement with those reported in the literature. ${ }^{2}$ 4i: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.18(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.36(\mathrm{~m}, 10 \mathrm{H})$ $2.09(\mathrm{~m}, 2 \mathrm{H})$ 2.53-2.27(m, 1H), $2.45(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.55(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=19.39,22.69,23.80,25.34,26.15,35.39,37.27,62.20,73.53,75.90$, 119.84, 132.45 IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3467(\mathrm{~b}, \mathrm{OH}), 2946(\mathrm{~m}), 2340(\mathrm{~m}), 1444(\mathrm{~m}), 1375(\mathrm{~m})$, 1208 (m), 1146 (m), 1065 (s). ESI-HRMS: m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{MH}]^{++}$: 197.1536, found: 197.1536.

(\pm)-1S,2R,4R)-4-methyl-1-phenyltetrahydro-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'pyran] (3j) and (土)-10-methyl-7-phenyl-1-oxaspiro[5.5]undec-9-en-7-ol (4j)

Compound $\mathbf{3 j}$ and $\mathbf{4 j}$ were synthesized according to general procedure 1 starting from dienol $\mathbf{1 j}$ ($100 \mathrm{mg}, 0.39$ mmol) and Amberlyst-15 ($27 \mathrm{wt} \%$ with respect to $\mathbf{1 j}, 0.1$ $\mathrm{mmol}, 30.4 \mathrm{mg}$) in MeCN stirred at room temperature for 4 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded 3 j as a white powder ($42 \mathrm{mg}, 0.162 \mathrm{mmol}, 42 \%$) and \%) and $\mathbf{4 j}$ ($15 \mathrm{mg}, 0.058 \mathrm{mmol}, 18 \%$) as a white powder. 3j: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.73-$ $7.21(\mathrm{~m}, 5 \mathrm{H}), 4.07-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.53\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=11.4\right.$, $9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.32(\mathrm{~m}, 10 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.04-0.76(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=141.26,127.75$, 126.60, 125.78, 91.27, 84.29, 83.67, 65.83, 46.21, 38.00, 33.58, 31.94, 26.05, 22.43, 19.01. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2941(\mathrm{~m}), 2858(\mathrm{w}), 1449(\mathrm{~m}), 1121(\mathrm{~m}), 1071(\mathrm{~s}), 1044(\mathrm{~s}), 1021(\mathrm{~s})$, 988 (m), 761 (s), 701 (s). ESI-HRMS: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{MH}]^{+}: 259.1693$, found: 259.1693. CAS number :1972656-21-5. The experimental data are in agreement with those reported in the literature. ${ }^{2} \mathbf{4 j}$: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.70-7.25(\mathrm{~m}, 5 \mathrm{H})$, $5.48(\mathrm{t}, 1 \mathrm{H}), 3.78-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.05(\mathrm{~m}, 5 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.22(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=144.74,132.90,127.52,126.86,119.73,76.36,61.93$, 39.02, 33.29, 29.07, 26.16, 23.96, 19.04. IR (neat): $\widetilde{v}\left(\mathrm{~cm}^{-1}\right)=3508(\mathrm{OH}), 2938(\mathrm{~m}), 2857$ (w), 2360 (m), 2939 (m), 1493 (m), 1445 (m), 1077 (s), 1045 (s), 908 (m), 758 (s), 700 (s). ESI-HRMS: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{MH}]^{++}: 259.1693$, found: 259.1690. 1071 (s), 1044 (s), 1021 (s), 988 (m), 761 (s), 701 (s). ESI-HRMS: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}$ [MH] ${ }^{+}$: 259.1693, found: 259.1693.

(\pm)-(1R,2R,4R)-1,4-dimethyldihydro-3'H-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'-furan] (3k) and (\pm)-6,9-dimethyl-1-oxaspiro[4.5]dec-8-en-6-ol (4k)

Compound $\mathbf{3 k}$ and $\mathbf{4 k}$ were synthesized according to general procedure 1 starting from dienol $\mathbf{1 k}$ (101 mg , 0.55 mmol) and Amberlyst-15 ($27 \mathrm{wt} \%$ with respect to $\mathbf{1 k}, 13.8 \mathrm{mmol}, 43.5 \mathrm{mg}$) in MeCN stirred at room temperature for 4 h . Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded to $\mathbf{3 k}$ as a pale yellow oil ($15 \mathrm{mg}, 0.083 \mathrm{mmol}, 15 \%$) and $\mathbf{4 k}$ (25 $\mathrm{mg}, 0.138 \mathrm{mmol}, 25 \%$) as a pale yellow oil. $\mathbf{3 k}$: ${ }^{1} \mathrm{H}-$ NMR (200 MHz, CDCl $_{3}$): $\delta[p p m]=3.88-3.67(\mathrm{~m}, 2 \mathrm{H})$, 2.38 (ddd, $\left.{ }^{3} J=11.5,8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.16\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=12.1,7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.98-1.77(\mathrm{~m}$, 3H), $1.74-1.41(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ 90.90, 86.11, 83.63, 67.79, 52.90, 37.74, 36.07, 32.84, 25.81, 21.98, 17.21. IR (neat): \tilde{v} $\left(\mathrm{cm}^{-1}\right)=2966(\mathrm{~m}), 2932(\mathrm{~m}), 2868(\mathrm{w}), 1445(\mathrm{w}), 1375(\mathrm{~m}), 1232(\mathrm{~m}), 1126(\mathrm{~m}), 1071(\mathrm{~m})$, 1047 (s), 905 (m), 856 (s). ESI-HRMS: m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{MH}]^{++}: 183,1385$, found: 183,1382. CAS number: 1972656-17-9. The experimental data are in agreement with those reported in the literature. ${ }^{2} \mathbf{4 k}$: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.23(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.58$ (m, 1H), 1.59-1.72 (m, 3H), 1.82-2.30 (m, 7H), $3.85(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=23.20,23.25,26.27,30.77,38.41,41.88,68.59,72.09,86.02$, 119.57, 132.59. IR (neat): $\tilde{\boldsymbol{v}}\left(\mathrm{cm}^{-1}\right)=3465(\mathrm{~b}, \mathrm{OH}), 2967(\mathrm{~m}), 2901(\mathrm{~m}), 1441(\mathrm{~m}), 1366$ (m), $1128(\mathrm{~m}), 1108(\mathrm{~m}), 1065(\mathrm{~s})$. ESI-HRMS: m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{MH}]^{+}$: 259.1693, found: 259.1690.

(\pm)-(1S,2R,4R)-4-methyl-1-phenyldihydro-3'H-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'furan] (3I) and (\pm)-9-methyl-6-phenyl-1-oxaspiro[4.5]dec-8-en-6-ol (4I)

Compound $\mathbf{3 I}$ and 41 were synthesized according to general procedure 1 starting from dienol 11 ($101 \mathrm{mg}, 0.41$ mmol) and Amberlyst-15 (27 wt\% with respect to 1I, 10.3 mmol, 32.5 mg) in MeCN stirred at room temperature for 4h. Purification by flash chromatography ($\mathrm{PE}: \mathrm{Et}_{2} \mathrm{O}=95: 5$) afforded 3 II as a pale yellow oil ($40.4 \mathrm{mg}, 0.165 \mathrm{mmol}, 40 \%$) and $4 \mathrm{I}(18 \mathrm{mg}, 0.074 \mathrm{mmol}, 18 \%)$ as a pale yellow oil. 3 I : ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.53-7.17(\mathrm{~m}, 5 \mathrm{H})$, $3.85-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.37(\mathrm{~m}$, 8 H), $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.18-0.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=140.90,127.77,126.84,125.79,92.33,90.10,83.64,68.59,53.59,37.58$, 37.46, 32.61, 25.56, 22.11. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2965(\mathrm{~m}), 2866(\mathrm{w}), 1446(\mathrm{~m}), 1112(\mathrm{~m})$, 1036 (s), 851 (m), 759 (s), 700 (s). APGC-HRMS: m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{MH}]^{+}: 245.1542$, found: 245,1550. CAS number: 1972656-20-4. The experimental data are in agreement with those reported in the literature. ${ }^{2}$ 4I: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=7.67-7.24$ $(\mathrm{m}, 5 \mathrm{H}), 5.50(\mathrm{t}, 1 \mathrm{H}), 3.77-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.17-$ $1.76(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.49-0.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=144.05$, 133.88, 127.77, 127.27, 127.13, 119.04, 85.80, 74.93, 69.02, 42.23, 38.86, 33.66, 26.35, 23.73. IR (neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3419(\mathrm{OH}), 2961(\mathrm{~m}), 2854,2358(\mathrm{~m}), 2337(\mathrm{w}), 1447(\mathrm{~m}), 1199$ (m), 1034 (s), 825 (m), 752 (s), 701 (s). ESI-HRMS: m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{MH}]^{+}: 245.1536$, found: 245,1535.

${ }^{1}$ V. Morizur, D. Hector, S. Olivero, J. R. Desmurs, E. Duñach, Eur. J. Org. Chem. 2016, 3126-3129.
${ }^{2}$ P. Ondet, L. Lempenauer, E. Duñach, G. Lemière, Org. Chem. Front. 2016, 3, 999-1003. ${ }^{3}$ S.H. Cai, J.-H. Xie, S. Song, L. Ye, C. Feng and T.P. Loh, ACS Catalysis 2016, 6, 55715574.

