Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Heterogeneous Catalysis for the tandem cyclisation of unsaturated alcohols

Lorenzo Seijo, Pierrick Ondet, Sandra Olivero and Elisabet Duñach*

Université de Côte d'Azur, Institut de Chimie de Nice, CNRS, Faculté des Sciences

Parc Valrose, 06108 Nice Cedex 2, France.

1 General Conditions

Amberlyst-15[®] hydrogen form was used as catalyst (from Sigma Aldrich, 216320-25G, Lot # MKBN5224V, P Code 1001537778, CAS 39389-20-3).

All reactions with air or moisture sensitive reagents were conducted in dried glassware under an atmosphere of nitrogen. 3,4-dihydro-2*H*-pyran was used as received without further purification. Tetrahydrofuran (THF) was distilled from sodium/benzophenone, 1,2dichloroethane (CH₂)₂Cl₂) was dried by distillation over CaH₂. MeCN and MeNO₂ (from Sigma Aldrich, HPLC quality) were used as received without further purification. Solvents for flash and thin layer chromatography [petroleum ether] (PE) and diethyl ether (Et₂O) were used as received without further purification. Reactions were monitored by analytical Thin Layer Chromatography (TLC), which was performed on 0.20 mm precoated silica plates (Silica gel 60, F₂₅₄, *Macherey-Nagel*). Detection of non UV-active substances was carried out by staining with *p*-anisaldehyde (0.7 mL *p*-anisaldehyde, 1.7 mL acetic acid and 9.5 mL conc. sulfuric acid in 250 mL ethanol), and subsequent heating (heat gun, ca. 150 °C). Separations *via* column chromatography were carried out on a Combi*Flash*[®]*Rf*+ (Teledyne Isco, USA), using CHROMABOND[®] Flash columns (Macherey-Nagel GmbH & Co. KG, Germany).

NMR spectra presented (¹H, ¹³C) were recorded on a *Bruker* AV-500, AV-400 and AV-200 spectrometer at a temperature of 300 K. Chemical shifts (δ) are given in parts per million (ppm) and refer to the residual proton signal of the used solvent. In ¹H-spectra the CDCl₃ residual peak was applied as an internal standard with a chemical shift of 7.26 ppm. The DMSO-d⁶ residual peak was applied as an internal standard with a chemical shift of 2.54. ¹³C-spectra were calibrated according to the deuterium-coupled signals of the used solvent

(CDCl₃ = 77.16 ppm, DMSO-d⁶ = 40.45 ppm). Spectral splitting patterns are designated as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), m_c (centered multiplet). Infrared spectra were recorded on a Jasco FT/IR-4600 spectrometer. Samples were analyzed directly in substance with the attenuated total reflexion method (ATR). Absorption maxima are reported in wavenumbers (cm⁻¹) and characterised with the following symbols, according to their form and intensity: s (strong), m (medium), w (weak), b (broad). Analytical GC analyses were performed on a Shimadzu GC-2025 capillary gas chromatograph. Analytical GC/MS analyses were performed on a *Shimadzu* QP2010S-MS chromatograph (EI, 70 eV) equipped with a SLB-5ms capillary column (thickness: 0.25 mm, length: 30 m, inside diameter: 0.25 mm). High resolution mass spectrometry (HRMS) was performed on a mass spectrometer LTQ-Orbitrap hybrid Exactive Plus mass spectrometer. Compounds were analyzed in loop injection mode in positive ESI (Electrospray ionization) and APGC (Atmospheric Pressure Gas Chromatography).

2 Experimental Procedures

2.1 Synthesis of the starting materials

2.1.1 Synthesis of heterogeneous catalyst SPEEK-OH and (SPEEK)₃-Bi

SPEEK-CI (sulfonation degree 100%) was synthesized from PEEK Solvay KT-820 NT (DP =70) in agreement with the literature.¹

 $(SPEEK)_3$ -Bi and SPEEK-OH (sulfonation degree 100%) were synthesized from SPEEK-CI in agreement with the literature.¹

SPEEK-CI:

¹H RMN (400 MHz, DMSO-d⁶): 7.86-7.72 (m, 4H), 7.51 (d, J = 2.3 Hz, 1H), 7.26-7.00 (m, 6H). **IR (cm⁻¹):** 1657, 1592, 1465, 1383, 1260, 1222, 1171, 932, 758.

SPEEK-OH:

¹H RMN (400 MHz, DMSO-d⁶): δ 7.84-7.72 (m, 4H), 7.51 (d, J = 2.3 Hz, 1H), 7.24-6.97 (m, 6H). IR (cm⁻¹): 3372, 1636, 1601, 1483, 1225, 1170, 1041, 930, 861.

Acid-Base Titration of SPEEK-OH (51 mg, MW = 368 g/mol) in water (NaOH 0,01M):

One function RSO₃H by PEEK monomer

(SPEEK)₃Bi:

RMN ¹**H (400 MHz, DMSO-d⁶):** 7,85 - 7,73 (m, 4H), 7,50 (d, 1H), 7,26 - 6,99 (m, 6H) **IR (cm**⁻¹): 1625, 1578, 1460, 1222, 1147, 1130, 1088, 1009, 872, 828.

2.1.2 Synthesis of dihydropyranyl derivatives 1a-I

The starting dienois **1a-d**, **1f** and **1g-I** were prepared in agreement with those reported in the literature.²

Synthesis of 1-(3,4-dihydro-2H-pyran-6-yl)-2,2,5-trimethyl-1-phenylhex-4-en-1ol (1e)

2,2,5-trimethyl-1-phenylhex-4-en-1-one \bf{A} was prepared in agreement with those reported in the literature.³

To a 2 M solution of 3,4-dihydro-2*H*-pyran (1.2 eq. 0.48 g, 5.60 mmol, 0.47 mL) in anhydrous THF, *tert*-BuLi (1.9 M in pentane, 1.0 – 1.2 eq.) was added dropwise at -78 °C. The mixture was allowed to warm to -5 °C and stirred at this temperature for 3 hours, before being recooled to -78 °C, followed by addition of 2,2,5-trimethyl-1-phenylhex-4-en-1-one **A** (1.0 eq., 1.012 g, 4.68 mmol).). The solution was slowly warmed to room temperature and stirred for an additional 2 – 3 hours. Then 5 mL of a saturated aqueous NH₄Cl solution were added, the forming precipitate was dissolved in water and the aqueous phase was extracted with ether (3 × 50 mL). The organic extracts were washed with brine, dried over MgSO₄ and the solvent was removed *in vacuo*. The residue was purified *via* flash column chromatography on Et₃N basified silica gel to afford **1e** in 53 % yield.

The crude product was isolated as a yellow oil (0.74 g, 2.48 mmol, 53%). **1e:** ¹**H RMN (CDCI₃):** 7.68-7.19 (m, 5H) 5.28-5.24 (t, 1H), 5.11-5.09 (t, 1H), 4.10-.99 (t, 2H), 2.48 (s, 1H, OH), 2.35-2.30 (m, 1H), 2.08-2.01 (q, 2H), 1.82-1.80 (m, 3H), 1.70 (s, 3H) 1.57 (s, 3H), 0.96 (s, 3H), 0.91(s, 3H). ¹³**C RMN (50 MHz, CDCI₃):** 158.8, 144.0, 133.9, 127.7, 127.3, 126.9, 122.3, 98.0, 81.9, 66.2, 48.0, 36.7, 26.5, 24.7, 23.2, 22.5, 20.7, 18.4. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 3569 (b, OH), 2962 (m), 2930 (m), 2854 (m), 1667 (m), 1449 (m), 1069 (s), 915 (s), 766 (m), 706 (s). **ESI-HRMS:** m/z calcd. for C₂₀H₂₉O₂

[MH]⁺⁺: 301.2162, found: 301.2161.

2.2 Cyclisation products 2a-h, 3i-l and 4i-l

General procedure 1: Amberlyst-15 catalysed cyclisation reaction

Amberlyst-15 was added to a 0.1 M solution of the cyclisation precursor **1a-I** in MeCN at 20 °C and the reaction was followed by GC. Upon completion, the reaction was quenched by addition of a saturated aqueous NaHCO₃ solution. Amberlyst-15 was filtered off. The aqueous phase was extracted with CH_2CI_2 and the combined organic extracts were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography afforded the corresponding products.

2.2.1 Solvent, temperature and dilution screening for the polycyclisation of 1a

Influence of the solvent

Table 1. Solvent screening for the cyclisation of 1a into 2a.

HO O O O O O O O O O O O	Cat. (23 wt% Solvent, r.	(b) (b)	
1a		2a	
Solvent	t (h)	Conv. 1a	Yield 2a
$(CH_2)_2Cl_2$	1	> 95 %	51%
CH _x Cl ₂	1	> 95 %	50%
MeNO ₂	1	> 95 %	52%
Toluene	16	> 95 %	50%
Cyclohexane	16	> 95 %	50%
MeCN	1	> 95 %	63%
MeCN + 20 mol% DIPEA	16	No conversion	-
DMSO	16	No conversion	-

DMF	16	No conversion	-
1,4-dioxan	1	> 95 %	44 %
THF	1	> 95 %	37 %
NMP	16	No conversion	-
H ₂ O	16	No conversion	-

Conditions: Amberlyst-15 (23 wt% with respect to **1a**), 20 °C, [**1a**] = 0,1 M. GC-FID yields were determined using dodecane as internal standard.

Influence of the temperature

Figure 1. Temperature screening for the cyclisation of 1a into 2a.

[1] = 0.1M, 27 wt% of Amberlyst-15 with respect to 1a, MeCN.

Influence of the amount of Amberlyst-15

Figure 2. Influence of the catalyst ratio in the cyclisation of 1a into 2a.

Conditions: Amberlyst-15 (wt% according to 1a), [1] = 0.1M, 20 °C, MeCN. GC-FID yields were determined using dodecane as internal standard.

Influence of the concentration of 1

Figure 3. Influence of the concentration of [1a].

Conditions: Amberlyst-15 (27 wt% with respect to **1a**), 20 °C, MeCN. GC-FID yields were determined using dodecane as internal standard.

Recycling Amberlyst-15 kinetic studies

<u>Recycling Amberlyst-15 Procedure:</u> After cycloisomerisation process, Amberlyst-15 was filtered off, washed with 1N HCl in water, with ethanol 96 %, dried at 101 °C during several hours and reused

Figure 4. Catalyst recycling test for the polycyclisation of 1a.

Conditions: MeCN, 20 °C, [1a] = 0.1 M, 27 wt% of Amberlyst-15 with respect to 1a.

2.2.2 Cyclisation products 2a-h

(±)-(1S,4S,7S)-1,3,3-trimethyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (*anti*-2a)

Compound *anti*-2a was synthesized according to **general procedure 1** starting from dienol 1a (100 mg, 0.47 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to 1a, 0.12 mmol, 37 mg) were added and the mixture was stirred for 1 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded *anti*-2a (64 mg, 0.30 mmol, 64%) as a pale yellow oil. ¹H-NMR (500 MHz, CDCl₃): δ [ppm] = 1.03 (s, 3H), 1.20 (s, 3H), 1.21 (s, 3H), 1.46-1.49 (m, 1H), 1.51-1.64 (m, 6H), 1.69- 1.74 (m, 1H), 1.78-1.81 (m, 1H), 2.09-2.11 (m, 1H), 2.33 (bs, 1H), 3.38-3.43 (m_c, 1H), 3.74-3.77 (m, 1H). ¹³C-NMR (125 MHz,

CDCl₃): δ [ppm] = 15.2, 21.0, 21.3, 26.5, 27.2, 29.2, 29.2, 33.9, 47.0, 64.8, 77.4, 85.3, 86.9. **IR** (neat): \tilde{V} (cm⁻¹) = 2695 (m), 2932 (m), 2857 (w), 1442 (w), 1376 (m), 1200 (m), 1178 (m), 1100 (s), 1074 (s), 989 (s), 909 (s). **APGC-HRMS**: *m/z* calcd. for C₁₃H₂₂O₂ [M]⁺⁺: 210.1624, found: 210.1624. **CAS number**: 2093246-02-5. The experimental data are in accordance with those reported in the literature.ⁱ **1H-NMR** (200 MHz, CDCl₃): δ [ppm] = 1.28 (s, 3H), 1.55 (bs, 3H), 1.68 (bs, 3H), 1.55-2.09 (m, 8H), 2.13 (bs, 1H, OH), 4.00 (t, ³*J* = 5.1 Hz, 2H), 4.79 (t, ³*J* = 3.8 Hz, 1H), 5.09-5.16 (m_c, 1H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 17.6, 20.0, 22.4, 23.1, 25.7, 25.8, 40.2, 66.3, 73.6, 94.1, 124.5, 131.7, 157.2. **IR** (neat): \tilde{V} (cm⁻¹) = 3464 (b, OH), 2967 (m), 2927 (m), 2850 (m), 1670 (m), 1985 (s), 918 (s). **ESI-HRMS**: *m/z* calcd. for C₁₃H₂₃O₂ [MH]⁺⁺: 211.1693, found: 211.1693. **CAS number**: 1972655-81-4. The experimental data are in agreement with those reported in the literature.²

(±)-(1R,4S,7S)-3,3-dimethyl-1-phenyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (*anti-*2b)

Compound *anti*-2b was synthesized according to general procedure 1 starting from dienol 1b (102 mg, 0.37 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to 1b, 0.09 mmol, 29.43 mg) was added and the mixture was stirred for 4 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded *anti*-2b (69 mg, 0.26 mmol, 69%) as a white solid. ¹H-NMR (200 MHz, CDCl₃): δ [ppm] = 7.55 – 7.37 (m, 2H), 7.34 – 7.09 (m, 3H), 3.85 – 3.70 (m, 1H), 3.55 – 3.31 (m, 1H), 2.55 – 2.49 (m, 1H), 2.40 – 2.19 (m, 1H), 2.10 – 1.66 (m, 4H), 1.66 – 1.36 (m, 4H), 1.30 (s, 6H), 1.13 – 0.92 (m, 1H). ¹³C-NMR (50

MHz, CDCl₃): δ [ppm] = 139.34, 127.68, 126.76, 126.27, 88.77, 88.53, 77.67, 64.73, 48.43, 35.49, 29.70, 29.51, 27.80, 26.35, 22.12, 21.00. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) =2965 (w), 2938 (m), 2859 (w), 1444 (w), 1276 (w), 1092 (m), 1075 (m), 1034 (s), 759 (s), 699 (s). **ESI-HRMS**: *m/z* calcd. for C₁₈H₂₅O₂ [MH]⁺⁺: 273.1855, found: 273.1841. **CAS number:** 1972656-08-8. The experimental data are in agreement with those reported in the literature.²

(±)-(1S,4S,7S)-1-ethyl-3,3-dimethyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'pyran] (*anti-*2c) and (±)-(1S,4S,7R)-1-ethyl-3,3-dimethyltetrahydro-2oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (*syn-*2c)

Compounds **2c** were synthesized according to **general procedure 1** starting from dienol **1c** (101 mg, 0.45 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to **1c**, 0.11 mmol, 35.4 mg) was added and the mixture was stirred for 2 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded *anti-***2c** (56 mg, 0.25 mmol, 59%) as a pale yellow oil and *syn-***2c** (3 mg, 0.013 mmol, 5%) as white crystals. *Anti-***2c**: ¹**H-NMR** (200 MHz, CDCl₃): δ [ppm] = 3.96 – 3.81 (m, 1H), 3.63 – 3.43 (m, 1H), 2.48 (s, 1H), 2.31 – 2.15 (m, 1H), 1.99 – 1.49 (m,

11H), 1.35 (s, 3H), 1.33 (s, 3H), 1.01 (t, ${}^{3}J$ = 7.5 Hz, 3H. 13 **C-NMR** (50 MHz, CDCl₃): δ [ppm] = 88.1, 87.43, 77.36, 64.75, 47.19, 30.59, 29.29, 29.26, 27.35, 26.62, 23.02, 21.14, 21.09, 8.69. **IR** (neat): \tilde{V} (cm⁻¹) = 2962 (m), 2934 (m), 2361 (w), 1456 (m), 1377 (m), 1273 (m), 1195 (m), 1175 (m), 1100 (s), 1076 (s), 1042 (s), 973 (s), 910 (s), 884 (s), 856 (s). **CAS number:** 1972656-05-5.S*yn*-**2c**: ¹**H-NMR** (200 MHz, CDCl₃): δ [ppm] = 3.92 – 3.76 (m, 1H), 3.53 (td, ${}^{3}J$ = 11.4, 3.4 Hz, 1H), 2.32 (d, ${}^{3}J$ = 3.0 Hz, 1H), 1.90 – 1.34 (m, 12H), 1.38 (s, 3H), 1.26 (s, 3H), 0.93 (t, ${}^{3}J$ = 7.5 Hz, 3H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 88.91, 88.04, 78.75, 64.91, 44.94, 29.95, 28.79, 27.99, 26.50, 22.50, 21.72, 20.95, 8.84. **IR** (neat): \tilde{V} (cm⁻¹) = 2955 (s), 2929 (s), 2849 (m), 2362 (m), 1438 (w), 1354 (w), 1239 (m), 1104 (s), 1078 (s), 1051 (s), 972 (s), 917 (s). **APGC-HRMS**: *m/z* calcd. for C₁₄H₂₅O₂[M]⁺: 224.1776, found:

224.1776. **CAS number:** 1972656-04-4. The experimental data are in agreement with those reported in the literature.²

(±)-(1S,4S,7S)-1,3,3,6,6-pentamethyltetrahydro-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (*anti-*2d)

Compound *anti-*2d was synthesized according to general **procedure 1** starting from dienol 1d (102 mg, 0.43 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to 1d, 0.11 mmol, 33.5 mg) was added and the mixture was stirred for 4 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded *anti-*2d (59 mg, 0.25 mmol, 58%) as a pale yellow oil. ¹H-NMR (200 MHz, CDCl₃): δ [ppm] = 3.89 – 3.72 (m, 1H), 3.57 – 3.37 (m, 1H), 2.43 (t, ³J = 2.3 Hz, 1H), 2.27 – 2.15 (m, 1H), 1.86 – 1.51 (m, 7H), 1.32 (s, 3H), 1.31 (s, 3H), 1.12 (s, 3H), 1.10 (s, 3H), 0.97 (s, 3H). ¹³C-NMR (50 MHz, CDCl₃): δ [ppm] = 89.52,

88.77, 77.54, 64.25, 47.60, 40.99, 36.57, 30.13, 29.60, 29.12, 27.85, 26.56, 24.33, 21.08, 11.39. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 2934 (m), 2860 (w), 1447 (w), 1375 (m), 1042 (m), 1092 (s), 1082 (s), 1071 (s), 987 (s). **APGC-HRMS**: *m/z* calcd. for C₁₅H₂₇O₂ [MH]⁺⁺: 239.2006, found: 239.2006. **CAS number:** 2093246-03-6. The experimental data are in agreement with those reported in the literature.²

(±)-(1R,2'S,4S)-3,3,6,6-tetramethyl-1-phenyltetrahydro-2oxaspiro[bicyclo[2.2.1]heptane-7,2'-pyran] (*anti-*2e)

Compound *anti-***2e** was synthesized according to **general procedure 1** starting from dienol **1e** (100 mg, 0.33 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to **1e**, 0.08 mmol, 26.16 mg) was added and the mixture was stirred for 2 h. Purification by flash chromatography (PE/Et₂O = 95:5) afforded *anti-***2e** (72 mg, 0.24 mmol, 72%) as a white solid. **TLC**: Rf = 0.78 (PE/ Et₂O = 95:5), [*p*-anisaldehyde]. ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.52 - 7.50 (m, 2H), 7.33 - 7.26 (m, 2H), 7.24 - 7.17 (m, 1H), 3.92 - 3.88 (m, 1H), 3.56-3.50 (m, 1H), 2.61

(s, 1H), 2.03 – 2.01 (m,1H), 1.83-1.82 (d, 2H), 1.68 – 1.54 (m, 5H), 1.42 (s, 3H), 1.35 (s, 3H), 1.01 (s, 3H), 0.97 (s, 3H). ¹³**C-NMR** (125 MHz, CDCl₃): δ [ppm] = 138.4, 128.0, 127.1, 126.5, 91.8, 91.4, 64.5, 48.1, 43.3, 37.1, 30.7, 30.5, 29.8, 28.2, 26.9, 24.3, 21.3. **IR** (neat): \tilde{V} (cm⁻¹) =2960 (w), 2942 (m), 2863 (w), 1450 (w), 1271 (w), 1090 (m), 1077 (m), 1037 (s), 760 (s), 703 (s). **ESI-HRMS:** m/z calcd. for C₂₀H₂₉O₂ [MH]⁺⁺: 301.2162, found: 301.2161.

X-ray crystal structure of anti-2e (CCDC number 1979084)

Compounds **2f** were synthesized according to **general procedure 1** starting from dienol **1f** (103 mg, 0.52 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to **1f**, 0.13 mmol, 41.2 mg) was added and the mixture was stirred for 2 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded *anti-***2f** (22.1 mg, 0.115 mmol, 22%) as a pale yellow oil and *syn-***2f** (52.5 mg, 0.267 mmol, 51%) as a pale yellow oil. *Anti-***2f**: ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.07 (s, 3H), 1.22 (s, 3H), 1.25 (s, 3H), 1.48-1.55 (m, 1H), 1.69-1.78 (m,

3H), 1.84-2.05 (m, 4H), 2.22-2.26 (m, 1H), 3.65-3.70 (m, 1H), 3.88-3.91 (m, 1H). ¹³**C-NMR** (125 MHz, CDCl₃): δ [ppm] = 15.8, 23.1, 27.1, 28.2, 28.4, 29.6, 34.0, 52.6, 67.1, 77.7, 84.8, 94.2. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 2965 (m), 2932 (w), 2871 (w), 1460 (w), 1377 (m), 1175 (m), 1080 (s), 917 (m). **APGC-HRMS**: *m/z* calcd. for C₁₂H₂₁O₂[MH]⁺⁺: 197.1542, found: 197.1532. **CAS number:** 1972656-01-1. *Syn-2*f: ¹**H-NMR** (500 MHz, CDCl₃): δ [ppm] = 1.12 (s, 3H), 1.25 (s, 3H), 1.43 (s, 3H), 1.45-1.50 (m, 1H), 1.52- 1.58 (m, 2H), 1.71-1.78 (m, 3H), 1.80-1.92 (m, 2H), 1.95-2.01 (dt, ³*J* = 12.4 Hz, 8.1 Hz, 1H), 3.78-3.82 (dt, ³*J* = 6.6 Hz, 8.1 Hz, 1H), 3.95-3.99 (m, 1H). ¹³**C-NMR** (125 MHz, CDCl₃): δ [ppm] = 15.3, 21.4, 25.9, 28.1, 28.5, 29.6, 33.1, 51.0, 68.2, 79.3, 85.0, 94.8. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 2965 (m), 2929 (m), 2860 (w), 1457 (w), 1375 (m), 1240 (w), 1121 (w), 1090 (s), 1059 (s), 914 (s). **APGC-HRMS**: *m/z* calcd. for C₁₂H₁₉O₂ [M-H]⁺⁺: 195. 1385, found: 195.1398. **CAS number:** 1972656-00-0. The experimental data are in agreement with those reported in the literature.²

(±)-(1R,4S,7S)-3,3-dimethyl-1-phenyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (*anti-*2g) and (±)-(1R,4S,7R)-3,3-dimethyl-1-phenyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (*syn-*2g)

Compounds **2g** were synthesized according to **general procedure 1** starting from dienol **1g** (101 mg, 0.39 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to **1g**, 0.10 mmol, 30.73 mg) was added and the mixture was stirred for 2 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded *anti-2g* (21 mg, 0.081 mmol, 21%) as a pale yellow oil and *syn-2g* (63 mg, 0.24 mmol, 62%) as white crystals. *Anti-2g*: ¹H-NMR (200 MHz, CDCl₃): δ [ppm] = 7.57 - 7.48 (m, 2H), 7.36 - 7.23 (m, 3H), 3.84

- 3.73 (m, 1H), 3.66 - 3.48 (m, 1H), 2.56 - 2.39 (m, 1H), 2.28 - 1.71 (m, 6H), 1.65 - 1.45 (m, 1H), 1.38 (s, 3H), 1.35 (s, 3H), 0.82 - 0.50 (m, 1H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 139.15, 127.72, 126.89, 125.72, 96.58, 87.50, 77.94, 67.58, 54.31, 34.71, 30.07, 28.49, 28.41, 26.24, 23.67. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 2968 (m), 2941 (m), 1446 (w), 1271 (w), 1079 (s), 1032 (m), 984 (m), 849 (m), 758 (s), 699 (s). **CAS number:** 1972656-09-9. *Syn*-2g: ¹H-NMR (200 MHz, CDCl₃): δ [ppm] = 7.62 - 7.52 (m, 2H), 7.36 - 7.20 (m, 3H), 3.67 (dt, ³*J* = 8.1, 7.1 Hz, 1H), 3.42 - 3.29 (m, 1H), 2.44 - 2.28 (m, 1H), 2.07 - 1.52 (m, 10H), 1.38 - 1.33 (m, 3H), 1.26 - 1.10 (m, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ [ppm] = 138.19, 127.81, 127.33, 126.99, 96.59, 87.70, 80.04, 68.19, 52.96, 30.98, 29.85, 28.50, 28.25, 25.01, 21.43. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 2969 (m), 2925 (w), 2862 (w), 1446 (m), 1377 (m), 1084 (m), 1037 (m), 981 (m), 967 (s), 757 (s), 698 (s). **APGC-HRMS**: *m/z* calcd. for C₁₇H₂₂O₂ [M]⁺⁺: 258.1624, found: 258.1623. **CAS number:** 1972656-10-2. The experimental data are in accordance with those reported in the literature.²

(±)- (1S,4S,7S)-1,3,3,6,6-pentamethyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (*anti-*2h) and (±)-(1S,4S,7R)-1,3,3,6,6-pentamethyldihydro-3'H-2-oxaspiro[bicyclo[2.2.1]heptane-7,2'-furan] (*syn-*2h).

Compounds **2h** were synthesized according to **general procedure 1** starting from dienol **1h** (102 mg, 0.45 mmol) in MeCN at room temperature, Amberlyst-15 (27 wt% with respect to **1h**, 11.4 mmol, 35.7 mg) was added and the mixture was stirred for 2 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded *anti*-**2h** (17 mg, 0.076 mmol, 17%) as a pale yellow oil and *syn*-**2h** (51 mg, 0.228 mmol, 50%) as a pale yellow oil. *Anti*-**2h**: ¹**H-NMR** (200 MHz, CDCl₃): δ [ppm] = 3.97 – 3.78 (m, 1H), 3.78 – 3.62 (m, 1H), 2.43 – 2.23 (m, 1H), 2.14 – 1.62 (m, 6H), 1.30

(s, 6H), 1.12 (s, 3H), 1.10 (s, 3H), 0.97 (s, 3H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 96.29, 87.81, 77.62, 65.84, 52.92, 41.02, 38.24, 31.80, 29.36, 28.69, 26.75, 26.30, 24.12, 11.77. **IR** (neat): \tilde{V} (cm⁻¹) = 2964 (m), 2865 (w), 1451 (w), 1379 (m), 1159 (w), 1077 (s), 978 (w),

926 (m), 896 (m). **CAS number:** 1972656-13-5. *Syn-***2h**: ¹**H-NMR** (200 MHz, CDCl₃): δ [ppm] = 3.87 - 3.67 (m, 2H), 2.10 - 1.86 (m, 3H), 1.85 - 1.66 (m, 3H), 1.46 (s, 3H), 1.42 - 1.32 (m, 1H), 1.31 (s, 3H), 1.12 (s, 3H), 1.01 (s, 3H), 0.94 (s, 3H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 95.30, 89.21, 79.24, 65.17, 49.73, 38.88, 37.31, 31.06, 29.35, 28.25, 26.82, 26.07, 24.38, 10.35. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 2955 (m), 2858 (w), 1467 (w), 1374 (m), 1080 (s), 1054 (m), 885 (m). **APGC-HRMS**: *m/z* calcd. for C₁₄H₂₅O₂ [MH]⁺⁺: 225.1855, found: 225.1855. **CAS number:** 1972656-12-4. The experimental data are in agreement with those reported in the literature.²

2.2.3 Cyclisation products 3i-l and 4i-l

(±)-(1R,2R,4R)-1,4-dimethyltetrahydro-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'-pyran] (3i) and (±)-7,10-dimethyl-1-oxaspiro[5.5]undec-9-en-7-ol (4i)

Compound **3i** and **4i** were synthesized according to **general procedure 1** starting from dienol **1i** (100 mg, 0.51 mmol) and Amberlyst-15 (27 wt% with respect to **1i**, 12.7 mmol, 42.2 mg) in MeCN stirred at room temperature for 4 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded **3i** as a pale yellow oil (12 mg, 0.06 mmol, 12%) and **4i** (34 mg, 0.173 mmol, 34%) as a pale yellow oil. **3i**: ¹**H**-**NMR** (200 MHz, CDCl₃): δ [ppm] = 3.83 (dd, ³*J* =

11.1, 2.4 Hz, 1H), 3.55 - 3.31 (m, 1H), 2.50 - 2.26 (m, 1H), 1.75 - 1.40 (m, 11H), 1.38 (s, 3H), 1.31 (s, 3H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 87.26, 83.53, 83.22, 65.76, 46.03, 38.12, 32.48, 31.95, 26.25, 22.24, 19.14, 17.20. **IR** (neat): \tilde{V} (cm⁻¹) = 2935 (m), 2860 (w), 1443 (w), 1375 (m), 1233 (m), 1207 (m), 1132 (m), 1083 (s), 1067 (s), 1036 (m), 998 (m), 902 (m), 861 (s). **ESI-HRMS**: *m/z* calcd. for C₁₂H₂₁O₂ [MH]⁺⁺: 197.1537, found: 197.1536. **CAS number:** 2093246-05-8. The experimental data are in agreement with those reported in the literature.² **4i:** ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 1.18 (s, 3H), 1.94 – 1.36 (m, 10H) 2.09 (m, 2H) 2.53-2.27 (m, 1H), 2.45 (m, 1H), 3.74-3.55 (m, 2H), 5.25 (m, 1H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 19.39, 22.69, 23.80, 25.34, 26.15, 35.39, 37.27, 62.20, 73.53, 75.90, 119.84, 132.45 **IR** (neat): \tilde{V} (cm⁻¹) = 3467 (b, OH), 2946 (m), 2340 (m), 1444 (m), 1375 (m), 1208 (m), 1146 (m), 1065 (s). **ESI-HRMS:** m/z calcd. for C₁₂H₂₁O₂ [MH]⁺⁺: 197.1536, found: 197.1536.

(±)-1S,2R,4R)-4-methyl-1-phenyltetrahydro-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'pyran] (3j) and (±)-10-methyl-7-phenyl-1-oxaspiro[5.5]undec-9-en-7-ol (4j)

Compound **3j** and **4j** were synthesized according to **general procedure 1** starting from dienol **1j** (100 mg, 0.39 mmol) and Amberlyst-15 (27 wt% with respect to **1j**, 0.1 mmol, 30.4 mg) in MeCN stirred at room temperature for 4 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded **3j** as a white powder (42 mg, 0.162 mmol, 42%) and %) and **4j** (15 mg, 0.058 mmol,18%) as a white powder. **3j**: ¹**H-NMR** (200 MHz, CDCl₃): δ [ppm] =7.73 – 7.21 (m, 5H), 4.07 – 3.85 (m, 1H), 3.53 (ddd, ³*J* = 11.4, 9.0, 4.9 Hz, 1H), 3.18 – 2.85 (m, 1H), 1.97 – 1.32 (m, 10H),

1.60 (s, 3H), 1.04 – 0.76 (m, 1H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 141.26, 127.75, 126.60, 125.78, 91.27, 84.29, 83.67, 65.83, 46.21, 38.00, 33.58, 31.94, 26.05, 22.43, 19.01. **IR** (neat): \tilde{V} (cm⁻¹) = 2941 (m), 2858 (w), 1449 (m), 1121 (m), 1071 (s), 1044 (s), 1021 (s), 988 (m), 761 (s), 701 (s). **ESI-HRMS**: *m/z* calcd. for C₁₇H₂₃O₂ [MH]⁺⁺: 259.1693, found: 259.1693. **CAS number** :1972656-21-5. The experimental data are in agreement with those reported in the literature.² **4j**: ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] =7.70 – 7.25 (m, 5H), 5.48 (t, 1H), 3.78-3.59 (m, 2H), 2.99 -2.05 (m, 5H), 1.78 (s, 3H), 1.55 – 1.22 (m, 6H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 144.74, 132.90, 127.52, 126.86, 119.73, 76.36, 61.93, 39.02, 33.29, 29.07, 26.16, 23.96, 19.04. **IR** (neat): \tilde{V} (cm⁻¹) = 3508 (OH), 2938 (m), 2857 (w), 2360 (m), 2939 (m), 1493 (m), 1445 (m), 1077 (s), 1045 (s), 908 (m), 758 (s), 700 (s). **ESI-HRMS**: *m/z* calcd. for C₁₇H₂₃O₂ [MH]⁺⁺: 259.1693, found: 259.1693.

(\pm)-(1R,2R,4R)-1,4-dimethyldihydro-3'H-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'-furan] (3k) and (\pm)-6,9-dimethyl-1-oxaspiro[4.5]dec-8-en-6-ol (4k)

Compound **3k** and **4k** were synthesized according to **general procedure 1** starting from dienol **1k** (101 mg, 0.55 mmol) and Amberlyst-15 (27 wt% with respect to **1k**, 13.8 mmol, 43.5 mg) in MeCN stirred at room temperature for 4 h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded to **3k** as a pale yellow oil (15 mg, 0.083 mmol, 15%) and **4k** (25 mg, 0.138 mmol, 25%) as a pale yellow oil. **3k**: ¹**H**-**NMR** (200 MHz, CDCl₃): δ [ppm] = 3.88 – 3.67 (m, 2H),

2.38 (ddd, ${}^{3}J$ = 11.5, 8.9, 4.5 Hz, 1H), 2.16 (ddd, ${}^{3}J$ = 12.1, 7.7, 5.5 Hz, 1H), 1.98 – 1.77 (m, 3H), 1.74 – 1.41 (m, 5H), 1.37 (s, 3H), 1.31 (s, 3H). 13 C-NMR (50 MHz, CDCl₃): δ [ppm] = 90.90, 86.11, 83.63, 67.79, 52.90, 37.74, 36.07, 32.84, 25.81, 21.98, 17.21. IR (neat): \tilde{V} (cm⁻¹) = 2966 (m), 2932 (m), 2868 (w), 1445 (w), 1375 (m), 1232 (m), 1126 (m), 1071 (m), 1047 (s), 905 (m), 856 (s). ESI-HRMS: *m/z* calcd. for C₁₁H₁₉O₂ [MH]⁺⁺: 183,1385, found: 183,1382. CAS number: 1972656-17-9. The experimental data are in agreement with those reported in the literature.² 4k: ¹H-NMR (200 MHz, CDCl₃): δ [ppm] = 1.23 (s, 3H), 1.37-1.58 (m, 1H), 1.59-1.72 (m, 3H), 1.82-2.30 (m, 7H), 3.85 (m, 2H), 5.27 (m, 1H). ¹³C-NMR (50 MHz, CDCl₃): δ [ppm] = 23.20, 23.25, 26.27, 30.77, 38.41, 41.88, 68.59, 72.09, 86.02, 119.57, 132.59. IR (neat): \tilde{V} (cm⁻¹) = 3465 (b, OH), 2967 (m), 2901 (m), 1441 (m), 1366 (m), 1128 (m), 1108 (m), 1065 (s). ESI-HRMS: m/z calcd. for C₁₁H₁₉O₂ [MH]⁺⁺: 259.1693, found: 259.1690.

$(\pm)-(1S,2R,4R)-4-methyl-1-phenyldihydro-3'H-7-oxaspiro[bicyclo[2.2.1]heptane-2,2'-furan] (3I) and (<math>\pm$)-9-methyl-6-phenyl-1-oxaspiro[4.5]dec-8-en-6-ol (4I)

Compound **3I** and **4I** were synthesized according to **general procedure 1** starting from dienol **1I** (101 mg, 0.41 mmol) and Amberlyst-15 (27 wt% with respect to **1I**, 10.3 mmol, 32.5 mg) in MeCN stirred at room temperature for 4h. Purification by flash chromatography (PE:Et₂O = 95:5) afforded **3I** as a pale yellow oil (40.4 mg, 0.165 mmol, 40%) and **4I** (18 mg, 0.074 mmol,18%) as a pale yellow oil. **3I:** ¹H-NMR (200 MHz, CDCl₃): δ [ppm] = 7.53 – 7.17 (m, 5H), 3.85 – 3.56 (m, 2H), 3.04 – 2.83 (m, 1H), 2.02 – 1.37 (m, 8H), 1.49 (s, 3H), 1.18 – 0.96 (m, 1H). ¹³C-NMR (50 MHz,

CDCl₃): δ [ppm] = 140.90, 127.77, 126.84, 125.79, 92.33, 90.10, 83.64, 68.59, 53.59, 37.58, 37.46, 32.61, 25.56, 22.11. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) = 2965 (m), 2866 (w), 1446 (m), 1112 (m), 1036 (s), 851 (m), 759 (s), 700 (s). **APGC-HRMS**: *m/z* calcd. for C₁₆H₂₁O₂ [MH]⁺⁺: 245.1542, found: 245,1550. **CAS number**: 1972656-20-4. The experimental data are in agreement with those reported in the literature.² **4I**: ¹**H-NMR** (400 MHz, CDCl₃): δ [ppm] = 7.67 – 7.24 (m, 5H), 5.50 (t, 1H), 3.77 – 3.62 (m, 2H), 3.16 – 3.12 (m, 1H), 2.44 – 2.39 (m, 1H), 2.17-1.76 (m, 4H), 1.54 (s, 3H), 1.49-0.72 (m, 3H). ¹³**C-NMR** (50 MHz, CDCl₃): δ [ppm] = 144.05, 133.88, 127.77, 127.27, 127.13, 119.04, 85.80, 74.93, 69.02, 42.23, 38.86, 33.66, 26.35, 23.73. **IR** (neat): $\tilde{\nu}$ (cm⁻¹) =3419 (OH), 2961 (m), 2854, 2358(m), 2337 (w), 1447 (m), 1199 (m), 1034 (s), 825 (m), 752 (s), 701 (s). **ESI-HRMS**: *m/z* calcd. for C₁₆H₂₁O₂ [MH]⁺⁺: 245.1536, found: 245,1535.

¹V. Morizur, D. Hector, S. Olivero, J. R. Desmurs, E. Duñach, *Eur. J. Org. Chem.* **2016**, 3126-3129.

² P. Ondet, L. Lempenauer, E. Duñach, G. Lemière, *Org. Chem. Front.* **2016**, *3*, 999-1003. ³ S.H. Cai, J.-H. Xie, S. Song, L. Ye, C. Feng and T.P. Loh, *ACS Catalysis* **2016**, *6*, 5571-5574.