Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Facile design of dextran derived polyurethane hydrogel & metallopolymer: sustainable approach for elimination of organic dyes and reduction of nitrophenols

Manita Das^a, Monika Yadav^c, Falguni Shukla^a, Sagufa Ansari^a, R.N. Jadeja^{a, c} and

Sonal Thakore*a,b

^a Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda,

Vadodara 390 002, India

^b Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.

^c Department of Environmental Studies, Faculty of Science, The Maharaja Sayajirao University

of Baroda, Vadodara 390 002, India

*Author for correspondence E-mail: chemistry2797@yahoo.com, drsonalit@gmail.com (Thakore. S.)

1.1 Protocol for assessment of adsorption

Briefly, known amount of dried hydrogel were immersed in distilled water to attain equilibrium swelling state. The swollen hydrogel was then added into 50 mL of aqueous dye solutions of predetermined concentrations (50, 100, 150, 200 and 250 mg L⁻¹) under stirring at room temperature for 24 hours. To determine the optimum amount of hydrogel to be used for further experiments different quantities of hydrogel (25, 50, 100, 150, 200mg) were added to 100mg L⁻¹ of MB and MO solution respectively. For pH variation study 100 mg L⁻¹ of dye solutions with different pH values were prepared and 100 mg of hydrogel was added to determine the fate of adsorption. The pH adjustments were done using NaOH and HCl solutions.

Using the optimized conditions kinetics experiments were performed at different time intervals. The effect of temperature on adsorption was also determined by performing the experiments at 35 °C and 45°C. For quantification of adsorption, supernatants were collected by

filtration after each set of adsorption experiment and measured using UV-Vis spectrophotometer (wavelength scan range: 200-800 nm) at $\lambda_{max} = 664$ for MB and $\lambda_{max} = 460$ for MO. The volume of supernatant removed is replenished by same volume of fresh dye solution to maintain uniform concentration of dye throughout the experiments. All the experiments were conducted in triplicate and mean values have been reported. The adsorption capacity, removal percentage and adsorption at particular time't' were calculated using the formula:

$$q_e = \frac{\left(C_0 - C_e\right)}{m} \times V \tag{3}$$

$$%R_e = \frac{C_0 - C_e}{C_e} \times 100$$
 ------ (4)

$$q_t = \frac{C_t - C_e}{m} \times V$$
(5)

where q_e is the adsorption capacity (mg/g), %Re denote removal efficiency and q_t represents the adsorption capacity at particular time 't' (mg/g); C₀is the initial concentration(mg L⁻¹), C_e is equilibrium concentrations (mgL⁻¹) and C_t denotes concentration at time 't'(mg L⁻¹) of dyes in aqueous solution; 'V' represent the volume of dyes solution (L); and 'm' denotes the weight of the hydrogel (g).

1.2 Protocol for determining the swelling characteristics

1.2.1 Swelling Kinetics

100 mg air dried uniformed sized hydrogel was weighed and immersed in distilled water. Swollen gels were withdrawn from water and excess of solvent on surface was wiped off using tissue paper and weighed at predetermined time intervals. Weight determination was carried out upto the attainment of constant weight. Equilibrium Water Absorbency (EWA) was calculated using the formula:

$$WA = \frac{W_t - W_0}{W_0}$$
 ------ (1)

Where, W_0 (mg) and W_t (mg) are the weight of dry and swollen hydrogel samples.

1.2.2 pH and salt sensitivity

100 mg of dried hydrogel sample was immersed in buffer solution of different pH (2-12) at room temperature for assessment of pH dependent EWA. The pH values of buffer solutions were adjusted using 1 mol L⁻¹ NaOH and 1 mol L⁻¹ HCl. The equilibrium water absorbency was calculated using equation (1) at each pH value. Different concentration of KCl solution (0.2, 0.6, 1.0 wt %) was used to determine water uptake ability of hydrogel in salt solution using the same method.

1.2.3 Water Retention Capacity

To study the water retention capacity of the hydrogel at equilibrium known amount of air dried hydrogel sample was kept in distilled water for one day. Swollen hydrogel was removed and weighed at regular time interval to investigate water retention capacity. Water retention ratio was calculated using the formula:

$$WR(\%) = \frac{(W_t - W_0)}{(W_e - W_0)} \times 100$$
(2)

Where, W_0 is the weight of initial dried hydrogel, W_e is the weight of swollen hydrogel at equilibrium and W_t is the weight of swollen hydrogel at time't'.

FIGURES

Figure S1: Thermogravimetric Curves for Hydrogel

Figure S2: Thermodynamic plot for removal of (A) MB and (B) MO using hydrogel

Figure S3:Graphs of (A)zero (B)first (C) second (D) third (E) pseudo first (F) pseudo second order kinetic models for adsorption of MB and MO on hydrogel (conditions: initial concentration 100 mgL⁻¹, adsorbent dosage 0.1g at room temperature)

Figure S4: (A) Studies for desorption of dyes in different eluents (B) assessment of recyclability of the hydrogel

Figure S5: General scheme for the reduction of nitroaromatics and UV-vis spectrophotometric determinations for reduction of varying concentrations of 4-NP using Ag@Hydrogel

Figure S6: (A) FT-IR overlay of fresh and recycled metallopolymer (B) Recycling studies

Figure S7: Process flow diagram for commercial production of dextran derived Hydrogels

TABLES

 Table S1: Elemental Composition of Recycled Hydrogel following Adsorption/Desorption

 Cycle

Material	C (wt-%)	N (wt-%)	0 (wt-%)	Na (wt-%)	S (wt-%)	Cl (wt-%)
Hydrogel +MB	51.90	2.74	45.23	0	0.11	0.02
Hydrogel +MO	54.83	0.67	44.26	0.10	0.14	0

Table S2: Comparison of Removal Efficiencies of Hydrogel with Literature Reports:

Sr.	Adsorbent	Dye	Concentration	Qe	Referen
N0 1	DayC (Amphinhilia	Mathul Oranga	1.5 mM	650 720	
1	Cationic Devtran	Methyl Olange		030-730	[49]
	hydrogel)			iiig/g	
2	Alg/PASAP	Malachite	10 mg/L	600-700	[47]
	(alginate/polyapartate	Green, Methylene		mg/g MB,	
	hydrogel beads)	Blue,MethylOra		300-350	
		nge		mg/g MG	
3	Poly (N-	Methylene Blue	<i>250</i> mg/L	<i>584</i> mg/g	[50]
	isopropylacrylamide/	(300mg L-1),			
	Acrylic Acid/N-	AuramineO(200			
	allylisatin) hydrogel	$\operatorname{mg} L-1),$			
	nanoparticles	Chrysoldine G			
4	poly(applie apid) (DAA)	(150IIIg L-1) Mothylona Plua	100 mg/I	2000 mg/g	[20]
4	based super-adsorbent	Mentylelle Diue	100 mg/L	2000 mg/g	[20]
	nanocomposite Hydrogel				
5	Salecan/PAD hydrogels	Methyl Orange	10 mg/L	56.2 mg/g	[17]
6	Supramolecular Complex	Methyl Orange	20mg/L		[2]
	of Graphene Oxide and				
	Sulfonatocalix[4]areneHy				
	drogel				
7	Graphene/Chitosan based	Congo Red (CR)	<i>100</i> mg/L	<i>356</i> mg/g	[51]
	Hydrogel		100 /		[[[]]
8	GO-hydrogel porous	Methylene Blue	100 mg/L	714.29	[52]
•	nanocomposites	Mathalana Dlara		mg/g	[[2]
9	graphene oxide/sodium	Methylene Blue		2.02 mg/g,	[53]
	nanocomposito hydrogol	Methyl Olange		1.24 mg/g	
10	Sodium alginate poly	Methylene Rhie	80 mg/I	12 77 mg/g	[54]
	itaconic acid (NaAlo/IA)			12.// iiig/g	[[]]]
	hvdrogel				
11	β – Cyclodextrin-	Nickel,	100 mg/L	18.6 mg/g	[55]

	Cellulose / Hemicellulose-	Cadmium		<i>42</i> mg/g	
	Based Hydrogels				
12	Magnetic bentonite/	Copper	<i>50</i> mg/L	<i>56</i> mg/g	[56]
	carboxymethyl				
	chitosan/sodium alginate				
	hydrogel beads				
13	Dextran Hydrogel	Methylene Blue,	100mg/L	<i>98</i> mg/g	This
		Methyl Orange	-	<i>84</i> mg/g	Work

Table S3: Elemental Composition of Ag@Hydrogel

Material	C (wt %)	N (wt %)	O (wt %)	Ag (wt %)
Hydrogel	50.67	0	49.33	0
Ag@Hydrogel	43.55	2.99	42.93	10.93

Table S4: Reduction of 4-NP at Different Concentrations using Ag@Hydrogel as Catalyst

Sr.no	Quantity of Ag@hydrogel (mg)	Concentration of 4-Nitrophenol (mM)	Time (s) At room temperature	Time (s) In presence of sunlight
1		10	21	10
2	10	25	55	40
3		50	85	48
4		100	130	52

Reaction conditions: All the reactions were carried using 50 μ L of 0.1 M 4-NP, 5x10⁻³M NaBH₄.