Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Transition metal sulfides laminated copper wire for flexible hybrid supercapacitor

Swati J. Patil^{a, b}, R. B. Pujari^a, Tian-Feng Hou^a, Dong-Weon Lee^{* a, c}

^aMEMS and Nanotechnology Laboratory, Graduate School of Mechanical Engineering,

Chonnam National University, Gwangju 61186, Republic of Korea

^bDepartment of Energy and Materials Engineering, Dongguk University-Seoul,

Seoul, 04620, Republic of Korea

^cCenter for Next-Generation Sensor Research and Development, Chonnam National University,

Gwangju 61186, Republic of Korea

***Corresponding author**: Prof. Dong-Weon Lee, E_mail: mems@jun.ac.kr

Experimental details:

 The chemicals used for the electrodeposition of the nanostructure material were received from Sigma Aldrich reagent quality and used without further purifications. Firstly, Cu-wire was cleaned with distilled water (DW), ethanol, and acetone and then used for deposition. Electrodeposition was conducted in potentiostatic mode through a three-electrode system with a platinum plate, Ag/AgCl and Cu-wire as a counter, reference and working electrodes, respectively at low temperature (50 ºC). **Schema 1** shows the schematic representation for the stepwise formation of $NiCo₂S₄$ nanoflakes and $ZnCo₂S₄$ nanosheets on a Cu-wire for flexible hybrid supercapacitors. In the first step, a single layer of CoS was formed on Cu-wire. In which, working electrolyte solution was prepared by mixing 10 mM $Co(NO)₃$.6H₂O, and 0.10 M thiourea in distilled water (40 mL) and experiment conducted at -1.2 V/SCE for 60 s deposition time, resulting in the formation of the Cu@CoS. Further, NiCo₂S₄ formed on a Cu@CoS by following potentiostatic mode of electrodeposition at -1.2 V/SCE for 300 s with electrolyte solution contains, 5 mM $Ni(NO)$ ₃.6H₂O, 10 mM $Co(NO)$ ₃.6H₂O, and 0.10 M thiourea mixed in 50 ml DW. The resulting Cu@CoS/NiCo₂S₄ thin film rinsed in DI water and dried at 60 °C for 4 h. For the second electrode preparation, electro-deposition was conducted for $ZnCo₂S₄$. In this case, the experiment was performed the same with $NiCo₂S₄$, only replacing Ni $(NO)₃·6H₂O$ instead of $Zn(NO)3.6H₂O$ in an electrolyte solution. The Cu@ZnCo₂S₄ thin film further formed on Cu-wire at the applied cathodic potential of -1.5 V/SCE for 600s then samples rinsed in DI water and dried 4 h. Finally, $Cu@CoS/NiCo₂S₄$ and $Cu@ZnCo₂S₄$ thin films used for further physico-electrochemical characterizations.

Schema 1 Schematic illustration for the formation of a flexible hybrid supercapacitor on Cuwire.

Electrochemical charge storage and impedance evaluations of electrodeposited material were evaluated using cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) using an IVIUM Tech potentiostat with the help of the three-electrode and a two-electrode system. For three-electrode system, electrochemical performances of the separate electrode were performed in 1M KOH electrolyte. In the case of a two-electrode system, the flexible wire-type hybrid supercapacitor was fabricated using $Cu@CoS/NiCo₂S₄$ and $Cu@ZnCo₂S₄$ electrodes assembled in polymeric gel electrolyte (PVA-KOH). The fabricated supercapacitor cell noted as $NiCo₂S₄/ZnCo₂S₄ FWHSCs.$

Formulas:

The specific capacity of the electrode was calculated from the cyclic voltammetry curve using formula (1) in a three-electrode configuration. From the charge/discharge study, the specific capacity, specific capacitance, power, and energy density of the electrode were calculated using the following formulae $(2)-(5)$.

1. Specific capacity =
$$
\frac{\int i(v)dv}{m \times v \times 3600}
$$

- 2. *Specificcapacity* = $\frac{i \times \Delta t \times A}{3600 \times m}$
- 3. Specificcapacitan ce = C_{cd} = $\frac{specyiceapacuy \times 3600}{\Delta V(V)}$ Specificcapacitan ce = C_{cd} = $\frac{specific capacity \times 3600}{\Delta V(V)}$ 4. Δt $P = \frac{E \times 3600}{\Delta t}$ $=\frac{E\times3600}{1}$ 5. 3600 $E = \frac{0.5 \times C_{cd} \times (\Delta V)^2}{2 \Delta V}$

Where, $\int_0^{\infty} i(v) dv$ (mA.V): average integrated area under the CV curves, v (mV s⁻¹): scan rate, and m (g): loading mass of the electrode material. *I* (mA cm²)*:* current density, *Δt* (s): discharge time, *ΔV (V):* potential window and *A* (cm²)*:* active area of the electrode. P (W kg-1): power density, E (Wh kg^{-1}): energy density,

XRD studies

Figure S1 The XRD patterns of the electrodeposited materials.

XPS studies

Figure S2 (a) The wide XPS scan spectra of CoS/NiCo₂S₄ and ZnCo₂S₄ materials. The XPS narrow scan spectra of Cu 2p in **(b)** Cu@CoS/NiCo₂S₄ and **(c)** Cu@ZnCo₂S₄ materials.

Electrochemical results

Fig S3 Bode plot of the $NiCo₂S₄ / ZnCo₂S₄$ FWHSCs.

Table S1 The atomic percentages of the elements obtained from the EDX spectra for the Cu@CoS, Cu@NiCo₂S₄, Cu@CoS/NiCo₂S₄, and Cu@ZnCo₂S₄ materials.

Table S2 The table shows the electrochemical performance of the fabricated wire-type NiCo₂S₄//ZnCo₂S₄ HSCs compared with the previous literature report.

References:

[1] L. Naderi and S. Shahrokhian, J Colloid and Inter. Sci. 542 (2019) 325-338.

- [2] Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D. G. Evans and X. Duan, Nano Energy 20 (2016) 294-304.
- [3] T. Purkait, G. Singh, D. Kumar, M. Singh and R. S. Dey, Sci. Rep. 8 (2018) 640-653.
- [4] L. Naderi and S. Shahrokhian, Chem. Eng. J. 392 (2020) 124880.
- [5] B. S. Soram, I. S. Thangjam, J. Y. Dai, T. Kshetria, N. H. Kim, J. H. Lee, Chem. Eng. J. 395 (2020) 125019.
- [6] S. Shahrokhian and S. Shahrokhian, J. Phys. Chem. C 123 (2019) 21353–21366.