Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Transition metal sulfides laminated copper wire for flexible hybrid supercapacitor

Swati J. Patil^{a, b}, R. B. Pujari^a, Tian-Feng Hou^a, Dong-Weon Lee^{* a, c}

^aMEMS and Nanotechnology Laboratory, Graduate School of Mechanical Engineering,

Chonnam National University, Gwangju 61186, Republic of Korea

^bDepartment of Energy and Materials Engineering, Dongguk University-Seoul,

Seoul, 04620, Republic of Korea

°Center for Next-Generation Sensor Research and Development, Chonnam National University,

Gwangju 61186, Republic of Korea

*Corresponding author: Prof. Dong-Weon Lee, E_mail: mems@jun.ac.kr

Experimental details:

The chemicals used for the electrodeposition of the nanostructure material were received from Sigma Aldrich reagent quality and used without further purifications. Firstly, Cu-wire was cleaned with distilled water (DW), ethanol, and acetone and then used for deposition. Electrodeposition was conducted in potentiostatic mode through a three-electrode system with a platinum plate, Ag/AgCl and Cu-wire as a counter, reference and working electrodes, respectively at low temperature (50 °C). Schema 1 shows the schematic representation for the stepwise formation of NiCo₂S₄ nanoflakes and ZnCo₂S₄ nanosheets on a Cu-wire for flexible hybrid supercapacitors. In the first step, a single layer of CoS was formed on Cu-wire. In which, working electrolyte solution was prepared by mixing 10 mM Co(NO)₃.6H₂O, and 0.10 M thiourea in distilled water (40 mL) and experiment conducted at -1.2 V/SCE for 60 s deposition time, resulting in the formation of the Cu@CoS. Further, NiCo₂S₄ formed on a Cu@CoS by following potentiostatic mode of electrodeposition at -1.2 V/SCE for 300 s with electrolyte solution contains, 5 mM Ni(NO)₃.6H₂O, 10 mM Co(NO)₃.6H₂O, and 0.10 M thiourea mixed in 50 ml DW. The resulting Cu@CoS/NiCo₂S₄ thin film rinsed in DI water and dried at 60 °C for 4 h. For the second electrode preparation, electro-deposition was conducted for ZnCo₂S₄. In this case, the experiment was performed the same with NiCo2S4, only replacing Ni (NO)3.6H2O instead of Zn(NO)₃.6H₂O in an electrolyte solution. The Cu@ZnCo₂S₄ thin film further formed on Cu-wire at the applied cathodic potential of -1.5 V/SCE for 600s then samples rinsed in DI water and dried 4 h. Finally, Cu@CoS/NiCo2S4 and Cu@ZnCo2S4 thin films used for further physico-electrochemical characterizations.

Schema 1 Schematic illustration for the formation of a flexible hybrid supercapacitor on Cuwire.

Electrochemical charge storage and impedance evaluations of electrodeposited material were evaluated using cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) using an IVIUM Tech potentiostat with the help of the three-electrode and a two-electrode system. For three-electrode system, electrochemical performances of the separate electrode were performed in 1M KOH electrolyte. In the case of a two-electrode system, the flexible wire-type hybrid supercapacitor was fabricated using Cu@CoS/NiCo₂S₄ and Cu@ZnCo₂S₄ electrodes assembled in polymeric gel electrolyte (PVA-KOH). The fabricated supercapacitor cell noted as NiCo₂S₄//ZnCo₂S₄ FWHSCs.

Formulas:

The specific capacity of the electrode was calculated from the cyclic voltammetry curve using formula (1) in a three-electrode configuration. From the charge/discharge study, the specific capacity, specific capacitance, power, and energy density of the electrode were calculated using the following formulae (2)-(5).

1. Specificcapacity =
$$\frac{\int i(v)dv}{m \times v \times 3600}$$

- 2. Specificcapacity = $\frac{i \times \Delta t \times A}{3600 \times m}$
- 3. Specificcapaci $\tan ce = C_{cd} = \frac{specificcapacity \times 3600}{\Delta V(V)}$ 4. $P = \frac{E \times 3600}{\Delta t}$ 5. $E = \frac{0.5 \times C_{cd} \times (\Delta V)^2}{3600}$

Where, $\int i(v)dv$ (mA.V): average integrated area under the CV curves, v (mV s⁻¹): scan rate, and m (g): loading mass of the electrode material. *I* (mA cm²): current density, Δt (s): discharge time, ΔV (V): potential window and A (cm²): active area of the electrode. P (W kg⁻¹): power density, E (Wh kg⁻¹): energy density,

XRD studies

Figure S1 The XRD patterns of the electrodeposited materials.

XPS studies

Figure S2 (a) The wide XPS scan spectra of $CoS/NiCo_2S_4$ and $ZnCo_2S_4$ materials. The XPS narrow scan spectra of Cu 2p in (b) Cu@CoS/NiCo_2S_4 and (c) Cu@ZnCo_2S_4 materials.

Electrochemical results

Fig S3 Bode plot of the $NiCo_2S_4//ZnCo_2S_4$ FWHSCs.

Table S1 The atomic percentages of the elements obtained from the EDX spectra for theCu@CoS, Cu@NiCo2S4, Cu@CoS/NiCo2S4, and Cu@ZnCo2S4 materials.

Cu@CoS		Cu@NiCo ₂ S ₄		Cu@CoS/NiCo ₂ S ₄		Cu@ZnCo ₂ S ₄	
Element	At%	Element	At%	Element	At%	Element	At%
ОК	50.18	ОК	14.48	ОК	13.69	ОК	12.08
SK	3.65	SK	39.47	SK	42.69	SK	39.53
СоК	22.13	СоК	21.33	СоК	19.84	СоК	20.46
NiK	0.00	NiK	09.34	NiK	8.88	ZnK	12.84
CuK	24.04	CuK	15.38	CuK	14.9	CuK	15.09

Table S2 The table shows the electrochemical performance of the fabricated wire-type $NiCo_2S_4//ZnCo_2S_4$ HSCs compared with the previous literature report.

Electrode material	Capacitance	Power density	Energy	Ref.
			density	
3D-	0.504 F cm ⁻²	4050 μW cm ⁻²	0.202 mWh	[1]
NiMoO4/Ni@CW//rGO/CF			cm ⁻²	
CuO@CoFe-LDH	468.75 mF cm ⁻	45720 μW cm ⁻	93.75 µWh	[2]
	2	2	cm ⁻²	
pErGO@Cuf/Cu wire	283.5 mF cm ⁻²	7.6 mW cm ⁻²	39.3 μWh cm ⁻²	[3]
NiVS/NiCuP/CW/rGO/CF	13.4 F cm ⁻²	4.3 mW cm ⁻²	295 μWh cm ⁻²	[4]
Cu@Ni@NiCoS NFs	-	11.15 μW cm ⁻²	0.48 μWh cm ⁻²	[5]
CoNi ₂ S ₄ /E-NZP film	8.9 F cm ⁻²	9280 μW cm ⁻²	108.4 µWh	[6]
@CW//rGO/CF			cm ⁻²	
NiCo ₂ S ₄ //ZnCo ₂ S ₄ HSCs	4.8 mF cm ⁻²	1125 mW cm ⁻²	1.5 mWh cm ⁻²	Present
				work

References:

[1] L. Naderi and S. Shahrokhian, J Colloid and Inter. Sci. 542 (2019) 325-338.

- [2] Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D. G. Evans and X. Duan, Nano Energy 20 (2016) 294-304.
- [3] T. Purkait, G. Singh, D. Kumar, M. Singh and R. S. Dey, Sci. Rep. 8 (2018) 640-653.
- [4] L. Naderi and S. Shahrokhian, Chem. Eng. J. 392 (2020) 124880.
- [5] B. S. Soram, I. S. Thangjam, J. Y. Dai, T. Kshetria, N. H. Kim, J. H. Lee, Chem. Eng. J. 395 (2020) 125019.
- [6] S. Shahrokhian and S. Shahrokhian, J. Phys. Chem. C 123 (2019) 21353-21366.