Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting information

Proton conduction in two hydrogen-bonded supramolecular lanthanide–complexes

Zhi-Qiang Shi*a, Ning-Ning Jia, Wan-Yao Chenb, and Gang Lib

^aCollege of Chemistry and Chemical Engineering, Taishan University, Taian 271021, P. R. China

^bCollege of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, P. R. China

Table ST Selected Bolid Lengths (A) and Angles (deg) for T						
Eu(1)-O(1)	2.444(4)	Eu(1)-O(15)	2.465(4)			
Eu(1)-O(5)	2.300(3)	Eu(1)-O(16)	2.412(4)			
Eu(1)-O(13)	2.384(4)	Eu(1)-O(17)	2.396(4)			
Eu(1)-O(14)	2.424(4)	Eu(1)-O(18)	2.390(5)			
O(1)-Eu(1)-O(15)	128.51(14)	O(14)-Eu(1)-O(1)	133.94(14)			
O(5)-Eu(1)-O(1)	142.79(13)	O(14)-Eu(1)-O(15)	75.47(16)			
O(5)-Eu(1)-O(13)	140.48(15)	O(16)-Eu(1)-O(1)	74.05(13)			
O(5)-Eu(1)-O(14)	75.95(15)	O(16)-Eu(1)-O(14)	69.10(15)			
O(5)-Eu(1)-O(15)	73.19(14)	O(16)-Eu(1)-O(15)	142.99(14)			
O(5)-Eu(1)-O(16)	107.19(14)	O(17)-Eu(1)-O(1)	71.99(13)			
O(5)-Eu(1)-O(17)	71.54(14)	O(17)-Eu(1)-O(14)	126.36(17)			
O(5)-Eu(1)-O(18)	95.57(17)	O(17)-Eu(1)-O(15)	130.37(15)			
O(13)-Eu(1)-O(1)	75.70(14)	O(17)-Eu(1)-O(16)	81.24(15)			

 Table S1 Selected Bond Lengths (Å) and Angles (deg) for 1

O(13)-Eu(1)-O(14)	77.31(17)	O(18)-Eu(1)-O(1)	71.07(15)
O(13)-Eu(1)-O(15)	72.29(15)	O(18)-Eu(1)-O(14)	145.19(18)
O(13)-Eu(1)-O(16)	89.53(15)	O(18)-Eu(1)-O(15)	69.78(16)
O(13)-Eu(1)-O(17)	147.69(15)	O(18)-Eu(1)-O(16)	144.07(15)
O(13)-Eu(1)-O(18)	90.09(19)	O(18)-Eu(1)-O(17)	80.10(19)

Table S2 Selected Bond Lengths (Å) and Angles (deg) for 2

Dy(1)-O(1)	2.341(3)	Dy(1)-O(15)	2.345(3)
Dy(1)-O(5)	2.371(3)	Dy(1)-O(16)	2.418(3)
Dy(1)-O(13)	2.363(3)	Dy(1)-O(17)	2.383(3)
Dy(1)-O(14)	2.411(3)	Dy(1)-O(18)	2.348(3)
O(1)-Dy(1)-O(17)	144.17(10)	O(15)-Dy(1)-O(16)	77.38(13)
O(1)-Dy(1)-O(18)	87.55(12)	O(15)-Dy(1)-O(17)	74.00(12)
O(5)-Dy(1)-O(14)	76.19(10)	O(15)-Dy(1)-O(18)	144.57(12)
O(5)-Dy(1)-O(16)	145.85(10)	O(17)-Dy(1)-O(14)	135.41(11)
O(5)-Dy(1)-O(17)	75.53(9)	O(17)-Dy(1)-O(16)	70.43(10)
O(13)-Dy(1)-O(5)	73.40(9)	O(18)-Dy(1)-O(5)	101.37(12)
O(13)-Dy(1)-O(14)	73.27(10)	O(18)-Dy(1)-O(13)	70.23(11)
O(13)-Dy(1)-O(16)	131.87(11)	O(18)-Dy(1)-O(14)	142.40(11)
O(13)-Dy(1)-O(17)	128.57(11)	O(18)-Dy(1)-O(16)	73.92(13)
O(14)-Dy(1)-O(16)	128.15(12)	O(18)-Dy(1)-O(17)	77.10(12)
O(15)-Dy(1)-O(5)	90.87(12)	C(1)-O(1)-Dy(1)	144.8(3)
O(15)-Dy(1)-O(13)	145.03(11)	C(12)-O(5)-Dy(1)	138.9(2)
O(15)-Dy(1)-O(14)	72.70(11)	O(1)-Dy(1)-O(14)	73.44(10)
O(1)-Dy(1)-O(5)	139.86(10)	O(1)-Dy(1)-O(15)	104.28(11)
O(1)-Dy(1)-O(13)	73.16(10)	O(1)-Dy(1)-O(16)	74.28(10)

—на	d(H A)	d(DA)	
	u(II ^M II)	u(D ^{MA})	
N(4)–H(4)…O(9)#1	2.01	2.854(6)	166.3
O(3)–H(3)····O(2)	1.62	2.436(5)	177.5
O(7)–H(7A)····O(6)	1.66	2.470(5)	171.3
O(13)-H(13B)····O(2)	1.85	2.680(6)	154.5
O(14)-H(14A)····O(4)#2	2.14	2.781(6)	130.7
O(14)-H(14B)····O(22)#3	1.88	2.706(6)	159.3
O(15)-H(15B)····O(12)#4	1.91	2.759(6)	162.5
O(16)-H(16A)····O(3)#2	1.91	2.818(5)	155.5
O(16)-H(16B)····O(10)#5	1.89	2.696(6)	154.8
O(17)–H(17A)····N(3)	2.19	2.881(6)	135.1
O(17)-H(17B)····O(21)#4	1.93	2.746(7)	156.3
O(18)-H(18B)····O(20)	1.92	2.703(8)	142.1
O(18)-H(18B)····O(20A)	2.19	2.87(4)	131.1
N(6)-H(6)-O(8)#6	2.01	2.834(6)	159.9
O(10)–H(10A)····O(11)	1.54(2)	2.435(7)	172(6)
O(19)-H(19A)N(5)#4	2.02	2.861(7)	170.1
O(19)-H(19B)O(20)#7	2.19	2.748(15)	115.1
O(20)-H(20A)····O(19)#7	2.10	2.748(15)	131.7
O(20)-H(20B)····O(4)#8	2.15	2.897(10)	146.2
O(21)–H(21A)····O(24)	1.98	2.779(13)	155.9
O(22)–H(22B)····O(6)#9	2.08	2.779(6)	139.0
O(23)–H(23B)····O(22)	2.05	2.856(18)	157.7

Table S3 Hydrogen bond lengths (Å) and angles (°) for 1

Symmetry codes: #1 = x, 1 + y, +z; #2 = -x, -y, -z; #3 = -1 + x, y, z; #4 = 1 - x, 1 - y, 1 - z; #5 = 1 - x, -y, 1 - z; #6 = x, -1 + y, z; #7 = 1 - x, 1 - y, -z; #8 = 1 - x, -y, -z; #9 = 1 + x, y, z.

D–H…A	d(H···A)	d(D···A)	∠DHA
N(1)-H(1)···O(31)#1	2.16	2.897(4)	143.5
N(3)-H(3)····O(20)	2.09(5)	2.854(4)	148(4)
O(3)–H(3A)····.O(2)	1.70	2.512(4)	172.6
O(7)–H(7A)···O(6)	1.57(2)	2.472(4)	173(6)
O(13)-H(13A)····O(25)	2.18	2.826(5)	130.7
O(13)-H(13B)····O(20)	1.84	2.659(4)	139.0
O(14)-H(14A)····O(29)#1	2.17	2.731(5)	122.6

Table S4 Hy	drogen l	bond	lengths ((Å)	and	angles	(°)	for	2
-------------	----------	------	-----------	-----	-----	--------	-----	-----	---

O(14)-H(14B)····O(31)#1	1.92	2.766(4)	166.7	
O(15)-H(15A)····O(23)#1	2.18	2.793(5)	129.7	
O(15)-H(15B)····O(26)	1.93	2.765(5)	153.2	
O(17)–H(17A)····O(24)#1	2.00	2.785(5)	149.9	
O(18)–H(18A)····O(19)	1.97	2.753(5)	147.4	
O(18)-H(18B)···O(30)	2.14	2.723(5)	123.1	
N(6)-H(6)-O(22)#4	2.11	2.884(5)	149.9	
O(10)–H(10A)···O(11)	1.67	2.492(5)	179.0	
O(19)–H(19A)····O(27)#1	1.95	2.727(5)	152.1	
O(19)-H(19B)····O(12)#5	1.94	2.765(5)	163.0	
O(20)–H(20A)····O(21)#6	1.96(6)	2.737(5)	167(6)	
O(20)-H(20B)····N(2)#6	2.08(6)	2.893(4)	160(5)	
O(21)-H(21A)····O(24)	2.03	2.850(6)	163.6	
O(21)-H(21B)····O(26)#1	2.00	2.843(6)	177.8	
O(23)–H(23A)····O(8)#7	2.07	2.889(4)	163.7	
O(23)-H(23B)···O(11)#8	1.94	2.791(4)	166.7	
O(26)–H(26A)····O(12)#9	1.98	2.821(5)	172.6	
O(26)-H(26B)····O(3)#10	2.07	2.843(5)	150.7	
O(27)–H(27A)····O(9)#9	2.05	2.778(5)	142.6	
O(27)–H(27B)····O(29)#9	2.09	2.790(6)	139.3	
O(28)–H(28A)····O(19)#2	2.22	2.879(7)	134.3	
O(29)–H(29A)····O(8)#7	1.97	2.787(5)	160.3	
O(31)–H(31B)····O(21)#11	2.01	2.858(5)	174.5	

Symmetry codes: #1 = 1 - x, 1 - y, 1 - z; #2 = x, 3/2 - y, -1/2 + z; #3 = 1 - x, -1/2 + y, 3/2 - z; #4 = 1/2 - x, 1 - y, -1/2 + z; #5 = x, 3/2 - y, 1/2 + z; #6 = 1 - x, 1/2 + y, 3/2 - z; #7 = -1/2 + x, 3/2 - y, 1 - z; #8 = 1/2 - x, 1 - y, 1/2 + z; #9 = 1/2 + x, y, 1/2 - z; #10 = 1 - x, 1/2 + y, 1/2 - z; #11 = x, 1/2 - y, -1/2 + z.

Fig. S1 Coordination environments of Dy^{3+} ion in 2.

Fig. S3. PXRD patterns of **2** (a) simulated from the single-crystal data, as-synthesized and after water treated samples and (b) after soaked in various pH solutions.

(b)

(a)

Fig. S4 Impedance spectra of 1 at 93% RH and 30-100 °C.

Fig. S5 Impedance spectra of 1 at 85% RH and 30-100 °C.

Fig. S6 Impedance spectra of 1 at 75% RH and 30-100 °C.

Fig. S7 Impedance spectra of 1 at 68% RH and 30-100 °C.

Fig. S8 Impedance spectra of 2 at 93% RH and 30-100 °C.

Fig. S9 Impedance spectra of 2 at 85% RH and 30-100 °C.

Fig. S10 Impedance spectra of 2 at 75% RH and 30-100 °C.

Fig. S11 Impedance spectra of 2 at 68% RH and 30-100 °C.

Fig. S12 Impedance spectra of 1 at 100 °C and different RHs.

Fig. S13 Impedance spectra of 2 at 100 °C and different RHs.

Fig. S14 PXRD patterns of 1 (a) and 2 (b): the simulated, as-synthesized and after electrochemical test