Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information for New Journal of Chemistry

Supporting Information

Theoretical study of two-dimensional bis(iminothiolato)metal monolayers as promising electrocatalysts for carbon dioxide reduction

Guanru Xing,^{1,2} Lin Cheng,^{1,*} Kai Li,² Yan Gao,³ Hao Tang,^{3,*} Ying Wang,² Zhijian Wu^{2,*}

¹ College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, P. R. China.

² State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

³ School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.

*Corresponding authors. lcheng1983@aliyun.com; tanghao@uestc.edu.cn ;

<u>zjwu@ciac.ac.cn</u>.

Fig. S1 Density of states for 3d and 4d orbitals of the studied compounds.

Fig. S2 The most stable structures for the favorable pathway. (a), (b), and (d) are the formation of HCOOH via *COOH on NiIT, CuIT, and PdIT, respectively. (c) is the formation of HCOOH via *HCOO on RuIT. The numbers on top of each column are the transferred numbers of $(H^+ + e^-)$ pairs.

Fig. S3 The most stable adsorption configurations of CO on TMIT. ΔE_{ads} is the adsorption energy (eV).

Fig. S4 The most stable adsorption configurations of HCOOH on TMIT. ΔE_{ads} is the adsorption energy (eV).