Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI) for New Journal of Chemistry.

Supplementary Information for

Switchable Superlyophobic Zeolitic Imidazolate Framework-8 Film-Coated Stainless-Steel Meshes for Selective Oil-Water Emulsion Separation with High Flux

Xin Gao, ^a Qiang Ma, ^a Zhengwei Jin, ^b Pei Nian ^a and Zheng Wang*^a

^{a.} State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Ningxia University, Yinchuan 750021, People's Republic of China

E-mail: wzheng@nxu.edu.cn

^{b.} Ningxia Coal Industry Co. Ltd., China Energy Group, Yinchuan 750411, People's Republic of China.

CONTENTS:

S1: Pore sizes and underwater oil contact angles of neat SSMs and ZFCM-1.

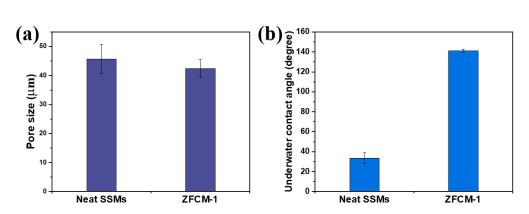


Fig. S1 (a) Pore size and (b) underwater oil contact angles of neat SSMs and Z-1.

ZFCM-1 was prepared by 1 h of crystallization on seeded SSMs. Neat SSMs and ZFCM-1 had similar pore sizes of ~43 μ m. However, the UOCAs of the two membranes were different. After coating thin ZIF-8 film onto the SSMs, the UOCA increased from 33.4 \pm 5.5° to 141.1 \pm 1.7°, proving that ZIF-8 enhanced the UOCA of the membrane.