Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Synthesis and characterization of vanadium-doped Mo(O,S)₂ oxysulfide for

efficient photocatalytic degradation of organic dyes

Sleshi Fentie Tadesse^a, Dong-Hau Kuo^{*a}, Worku Lakew Kebede^a, Lalisa Wakira Duresa^a

^aDepartment of Materials Science and Engineering, National Taiwan University of Science and

Technology, No. 43, Keelung Rd., Sec. 4, Da'an Dist., Taipei 10607, Taiwan

*Corresponding author, <u>dhkuo@mail.ntust.edu.tw</u>, fax +011-886-2-27303291

Fig. S1. Visible light experimental setup for degradation of methylene blue (MB) dye in aqueous solutions using the synthesis photocatalyst.

Fig. S2. UV-Visible absorbance profile for MB degradation using (a) V-Mo(O,S)₂-0, (b) V-Mo(O,S)₂-10, (c) V-Mo(O,S)₂-5, and (d) V-Mo(O,S)₂-20.

Fig. S3. (a) UV-Visible absorbance spectra for MB degradation using V-Mo(O,S)₂-10 under dark condition . (b) Degradation efficiency of MB over V-Mo(O,S)₂-10 under dark condition.

Fig. S4. (a) FT-IR spectra of bare $Mo(O,S)_2$ and V-doped $Mo(O,S)_2$. (b) Scaled view illustrating the shift of the vibrational frequency at 987 cm⁻¹ for V-doped $Mo(O,S)_2$ in comparison with bare $Mo(O,S)_2$.

Fig. S5. UV-Vis diffuse reflectance spectra of V-Mo $(O,S)_2$ -0, V-Mo $(O,S)_2$ -5, V-Mo $(O,S)_2$ -10, and V-Mo $(O,S)_2$ -20, in view of the absorption edges.

Fig. S6. Tauc plot for bandgap energy values of V-Mo $(O,S)_2$ -0, V-Mo $(O,S)_2$ -5, V-Mo $(O,S)_2$ -10, and V-Mo $(O,S)_2$ -20.

Table S1. Kinetics parameters of V-Mo(O,S)₂ oxysulfides for photocatalytic MB degradation

Conditions	Rate constant,	Pearson's	R ²	Intercept		
	k (min ⁻¹)	r				
V-Mo(O,S) ₂ -0	0.0098	0.9984	0.9959	0.3111		
V-Mo(O,S) ₂ -5	0.0155	0.9891	0.9729	0.3427		
V-Mo(O,S) ₂ -10	0.0279	0.9939	0.98472	0.6754		
V-Mo(O,S) ₂ -20	0.0194	0.9964	0.9910	0.5290		
V-Mo(O,S) ₂ -10, dark	0.0074	0.9837	0.9595	0.3125		
Blank	0.0033	0.9850	0.963	0.0520		

Fig. S7. EDS elemental mapping of Mo, O, S and V.

Fig. S8. (a) XPS full survey spectra for V-Mo(O,S)₂-10. High resolution spectra of (b) Mo3d, (c) O1s, and (d) S2p for pristine Mo(O,S)₂.

Table S2. Binding energy of the deconvoluted XPS peaks of Mo3d, S2p, O1s, and V2p for V- $Mo(O,S)_2$ -10 and V- $Mo(O,S)_2$ -0

	Binding Energy (eV)												
Photocatalyst	Mo _{3d}		S _{2p}		O _{1s}		V _{2p}						
	2s	Mo _{3d5/2}	Mo _{3d3/2}	S _{2p3/2}	S _{2p3/2}	S _{2p1/2}	O _{ad}	O _L	O _V	V _{2p3/2}	V _{2p3/2}	V _{2p1/2}	V _{2p12}
V-Mo(O,S) ₂ -10	226.2	229.5	232.5	159.1	161.2	162.8	527.8	529.5	531.3	512.8	516.9	519.7	524.2
V-Mo(O,S) ₂ -0	227.7	230.6	233.4	159.2	161.2	162.9	532.5	529.6	531.2	-	-	-	

Fig. S9. Band edge potentials of V-Mo(O,S)₂-10 nanoplates for photocatalytic MB degradation.