Supporting Information

for

Decoration of mesoporous carbon electrodes with tin oxide to boost their supercapacitive performance

Hang T. T. Le^{a,*}, Duc Tung Ngo^b, Viet-Anh-Dung Dang^a, Thuy T. B. Hoang^a,

Chan-Jin Park c,*

- ^a Department of Electrochemistry and Corrosion Protection, School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam.
- ^b Research and Development Center, Hyundai aluminum Vina shareholding company, Van Lam, Hung Yen, Vietnam.
- ^c Department of Materials Science and Engineering, Chonnam National University, 77, Yongbongro, Bukgu, Gwangju 61186, South Korea.

*Corresponding authors

Tel: +82-62-530-1704; Fax: +82-62-530-1699

E-mail addresses: hang.lethithu@hust.edu.vn (H.T.T. Le); parkcj@jnu.ac.kr (C.-J. Park)

Materials	Highest capacitance	Cycling stability (Retention)	Electrolyte	Synthesis approach	References
15-SNC/300	344 F g ⁻¹ at 5 mV s ⁻¹	92.4%/5000 cycles/50 mVs ⁻¹	1M K ₂ SO ₄	Incipient wetness technique and redox reaction	This work
Mosaic-structured SnO ₂ @C porous microspheres	420 F g ⁻¹ at 1 A g ⁻¹	91% /2000 cycles/1 A g ⁻¹	1M Na ₂ SO ₄	Ethanol-thermal carbonization and simple steam activation	1
Carbon-coated hollow SnO ₂ microspheres	43.3 F g ⁻¹ at 10 mV s ⁻¹	-	1M KOH	Template assisted method and calcination treatment	2
SnO ₂ nanoclusters wrapped functionalized carbonized cotton cloth	197.7 F g ⁻¹ at 1 A g ⁻¹	95.5%/5000 cycles/15 A g ⁻¹	1M Na ₂ SO ₄	Solvothermal reaction and calcination process	3
SnO ₂ dots decorated porous carbon nanofibers	225.4 F g ⁻¹ at 1 A g ⁻¹	~119.8%/ 2500 cycles	3 М КОН	Mild redox reaction	4
SnO ₂ /graphene nanocomposites	363.3 F g ⁻¹ at 10 mV s ⁻¹	-	1M Na ₂ SO ₄	Solvothermal method	5
SnO ₂ @CNT nanocomposites	188.42 F g ⁻¹ at 2 mV s ⁻¹	~75% /1000 cycles/200 mV s ⁻¹	2 M KCl	Screen-printing and sintering	6
SnO ₂ nanosheets on carbon cloth	247 F g ⁻¹ at 1 A g ⁻¹	76.9% /10000 cycles/3 A g ⁻¹	0.5 M LiNO ₃	Hydrothermal reactions and subsequent thermal treatments	7
Nitrogen doped graphene oxide@SnO ₂	~378 F g ⁻¹ at 4 A g ⁻¹	89%/5000 cycles/4 A g ⁻¹	6 М КОН	Thermal reduction	8
Carbon coated-SnO ₂ nanospheres	195 F g ⁻¹ at 1 A g ⁻¹	90%/ 2000 cycles/2 A g ⁻¹	4.5 M H ₂ SO ₄	Sintering	9
SnO ₂ /MWCNT	133.33 F g ⁻¹ at 0.5 mA cm ⁻²	-	1M Na ₂ SO ₄	Sonochemical synthesis	10
Nitrogen-doped reduced graphene oxide/SnO ₂ composite	437 F g ⁻¹ at 5 mV s ⁻¹	$90\% / 1000 \text{ cycles}/2 \text{ A g}^{-1}$	1M Na ₂ SO ₄	One-step hydrothermal method	11
SnO ₂ /carbon aerogel composite	119.2 F g ⁻¹ at 1 mV s ⁻¹	-	1 M H ₂ SO ₄	Impregnation method	12
Gasified rice husk porous carbon/S-doped SnO ₂ composite	215 F g^{-1} at 1.5 A g^{-1}	78.5%/5000 cycles/0.4 A g ⁻¹	6 М КОН	Hydrothermal reaction	13
Hexagonal- shaped SnO ₂ @C nano	37.8 F g ⁻¹ at 5 mV s ⁻¹	-	1 M H ₂ SO ₄	Reaction under autogenic pressure at elevated temperature	14

 Table S1. Comparison of electrochemical performance of SnO₂-carbon composite electrodes for supercapacitors

Fig. S1. SEM images of (a, b) SBA-15, and (c, d) N-CMK3.

Fig. S2. TGA plots of SNC composites in air at a heating rate of 10 °C min⁻¹.

Fig. S3. (a) Low- and (b) high-resolution TEM images of N-CMK3.

Fig. S4. Droplet contact angles for water droplets as a function of SnO₂ content loading of SNC composites.

Fig. S5. (a) SEM image and (b) CV plot of the SnO_2 electrode in 1 M Na_2SO_4 at a scan rate of 5 mV s⁻¹.

Fig. S6. Impedance spectra of the (a) 15-SNC composite after exposure to heat at temperatures ranging from 100 °C to 400 °C and (b) 15-SNC/300 in aqueous electrolytes of sulfate salts.

Fig. S7. Low- and high-resolution SEM images of 15-SNC annealed at different temperatures: (a, b) 100 °C, (c, d) 200 °C, (e, f) 300 °C, (g, h) 400 °C.

Fig. S8. Cyclic performance of the N-CMK3 electrode in 1 M K_2SO_4 electrolyte: (a) CV plot at different scan rates, (b) dependence of the specific capacitance on the scan rate.

Fig. S9. Capacitance retention of different SNC composite electrodes in $1 \text{ M K}_2\text{SO}_4$ electrolyte for 5000 cycles at a scan rate of 50 mV s⁻¹.

References

- 1. C. He, Y. Xiao, H. Dong, Y. Liu, M. Zheng, K. Xiao, X. Liu, H. Zhang and B. Lei, *Electrochimica Acta*, 2014, **142**, 157-166.
- 2. S. Ren, Y. Yang, M. Xu, H. Cai, C. Hao and X. Wang, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2014, **444**, 26-32.
- 3. X. Hong, S. Li, R. Wang and J. Fu, *Journal of Alloys and Compounds*, 2019, **775**, 15-21.
- 4. Y. Liu, J. Zhou, L. Chen, P. Zhang, W. Fu, H. Zhao, Y. Ma, X. Pan, Z. Zhang, W. Han and E. Xie, ACS Applied Materials & Interfaces, 2015, **7**, 23515-23520.
- 5. S. P. Lim, N. M. Huang and H. N. Lim, *Ceramics International*, 2013, **39**, 6647-6655.
- 6. C.-H. Xu and J.-Z. Chen, *Ceramics International*, 2016, **42**, 14287-14291.
- 7. Y. Zhang, Z. Hu, Y. Liang, Y. Yang, N. An, Z. Li and H. Wu, *Journal of Materials Chemistry A*, 2015, **3**, 15057-15067.
- 8. O. Kwon, B. K. Deka, J. Kim and H. W. Park, *International Journal of Energy Research*, 2018, **42**, 490-498.
- 9. V. Naresh and S. K. Martha, *Journal of The Electrochemical Society*, 2019, **166**, A551-A558.
- 10. V. Vinoth, J. J. Wu, A. M. Asiri, T. Lana-Villarreal, P. Bonete and S. Anandan, *Ultrasonics Sonochemistry*, 2016, **29**, 205-212.
- 11. J. Ji, H. Zhou, L. Xiong, L. Li, X. Yu and L. Wei, *Materials Research Express*, 2019, **6**, 0850g0857.
- 12. S.-W. Hwang and S.-H. Hyun, *Journal of Power Sources*, 2007, **172**, 451-459.
- 13. H. Wang, D. Wu, J. Zhou and G. Yang, *BioResources*, 2019, **14**, 5964-5979.
- 14. R. K. Selvan, I. Perelshtein, N. Perkas and A. Gedanken, *The Journal of Physical Chemistry C*, 2008, **112**, 1825-1830.