Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Catalyst-free and Solvent-free Hydroboration of Alkynes

Ashok Kumar Jaladi, Hyeon Seong Choi, and Duk Keun An* Department of Chemistry, Kangwon National University Chuncheon 24341, Republic of Korea E-mail: <u>dkan@kangwon.ac.kr</u>

Table of Contents

I. Copies of NMR spectra	S1–S38
II. Chemoselective hydroboration of phenyl acetylene over ester	
III. References	S40

I. Copies of NMR spectra

Figure S1: ¹H NMR of (*E*)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (2a)¹

Figure S2: ¹³C NMR of (*E*)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (2a)¹

Figure S4: ¹H NMR of (*E*)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane (2b)²

Figure S6: ¹¹B NMR of (*E*)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane (2b)¹²

Figure S7: ¹H NMR of (*E*)-4,4,5,5-tetramethyl-2-(2-methylstyryl)-1,3,2-dioxaborolane $(2c)^7$

Figure S8: ¹³C NMR of (*E*)-4,4,5,5-tetramethyl-2-(2-methylstyryl)-1,3,2-dioxaborolane (2c)⁷

Figure S10: ¹H NMR of (*E*)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)¹

Figure S11: ¹³C NMR of (*E*)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)¹

Figure S12: ¹¹B NMR of (E)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)¹²

Figure S13: ¹H NMR of (*E*)-2-(4-fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)¹

Figure S14: ¹³C NMR of (*E*)-2-(4-fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)¹

Figure S15: ¹¹B NMR of (*E*)-2-(4-fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)¹²

Figure S16: ¹⁹F NMR of (*E*)-2-(4-fluorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)¹²

Figure S17: ¹H NMR of (*E*)-2-(4-chlorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2f)¹⁴

Figure S18: ¹³C NMR of (*E*)-2-(4-chlorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2f)¹⁴

Figure S19: ¹¹B NMR of (*E*)-2-(4-chlorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2f**)¹³

Figure S20: ¹H NMR of (*E*)-2-(4-bromostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2g)⁹

Figure S22: ¹¹B NMR of (*E*)-2-(4-bromostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2g)¹²

Figure S23: ¹H NMR of (*E*)-4,4,5,5-tetramethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (2h)²

Figure S24: ¹³C NMR of (*E*)-4,4,5,5-tetramethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (2h)²

Figure S25: ¹¹B NMR of (*E*)-4,4,5,5-tetramethyl-2-(3-phenylprop-1-en-1-yl)-1,3,2-dioxaborolane (**2h**)

Figure S26: ¹H NMR of (Z)-4,4,5,5-Tetramethyl-2-(1,2-diphenyl-1-enyl)-1,3,2-dioxaborolane (2j)¹

Figure S27: ¹³C NMR of (*Z*)-4,4,5,5-Tetramethyl-2-(1,2-diphenyl-1-enyl)-1,3,2-dioxaborolane (2j)¹

Figure S28: ¹¹B NMR of (*Z*)-4,4,5,5-Tetramethyl-2-(1,2-diphenyl-1-enyl)-1,3,2-dioxaborolane (2j)

Figure S29: ¹H NMR of (E)-4,4,5,5-tetramethyl-2-(2-(naphthalen-1-yl)vinyl)-1,3,2-dioxaborolane (2k)⁶

Figure S30: ¹³C NMR of (E)-4,4,5,5-tetramethyl-2-(2-(naphthalen-1-yl)vinyl)-1,3,2-dioxaborolane (2k)⁶

Figure S31: ¹¹B NMR of (*E*)-4,4,5,5-tetramethyl-2-(2-(naphthalen-1-yl)vinyl)-1,3,2-dioxaborolane (2k)⁶

Figure S32: ¹H NMR of (E)-4,4,5,5-tetramethyl-2-(2-(thiophen-2-yl)vinyl)-1,3,2-dioxaborolane (21)¹⁴

Figure S33: ¹³C NMR of (E)-4,4,5,5-tetramethyl-2-(2-(thiophen-2-yl)vinyl)-1,3,2-dioxaborolane (2l)¹⁴

Figure S34: (E)-4,4,5,5-tetramethyl-2-(2-(thiophen-2-yl)vinyl)-1,3,2-dioxaborolane (2l)

Figure S35: ¹H NMR of (*E*)-2-(4-ethynylstyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2m)¹²

Figure S36: ¹³C NMR of (*E*)-2-(4-ethynylstyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2m)¹²

Figure S37: ¹¹B NMR of (*E*)-2-(4-ethynylstyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2m)¹²

Figure S38: ¹H NMR of 1,4-bis((*E*)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzene (2n)¹²

 $Figure \ S40: \ ^{11}B \ NMR \ of \ 1,4-bis((E)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl) benzene \ (2n)^{12} \$

Figure S41: ¹H NMR of (*E*)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)aniline (20)¹⁴

Figure S42: ¹³C NMR of (*E*)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)aniline (20)¹⁴

Figure S43: ¹¹B NMR of (*E*)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)aniline (**20**)¹⁴

Figure S44: ¹H NMR of methyl (*E*)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)vinyl)benzoate (**2p**)⁶

Figure S45: ¹³C NMR of (E)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate (2p)⁶

Figure S46: ¹¹B NMR of (E)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)benzoate (2p)⁶

Figure S47: ¹H NMR of (*E*)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane $(2q)^7$

Figure S48: ¹³C NMR of (*E*)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2q)⁷

Figure S49: ¹¹B NMR of (*E*)-2-(2-(cyclohex-1-en-1-yl)vinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2q**)⁷

Figure S50: ¹H NMR of (*E*)-2-(2-cyclohexylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2r)⁴

Figure S51: ¹³C NMR of (*E*)-2-(2-cyclohexylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2r)⁴

Figure S52: ¹¹B NMR of (*E*)-2-(2-cyclohexylvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2r)⁴

Figure S53: ¹H NMR of (E)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclohexan-1-ol (2s)⁷

 $Figure \ S54: \ ^{13}C \ NMR \ of \ (E) - 1 - (2 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) vinyl) cyclohexan - 1 - ol \ (2s)^7 \$

Figure S55: ¹¹B NMR of (E)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclohexan-1-ol (2s)⁷

Figure S56: Mass Spectrum of (E)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclohexan-1-ol (2s)⁷

Figure S57: Mass Spectrum of (E)-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)cyclohexan-1-ol (2s)⁷

Figure S58: ¹H NMR of (*E*)-2-(hept-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2t**)⁵

Figure S59: ¹³C NMR of (*E*)-2-(hept-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2t**)⁵

Figure S60: ¹¹B NMR of (*E*)-2-(hept-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2t**)⁵

Figure S61: ¹H NMR of (*E*)-2-(dec-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2u**)⁶

Figure S62: ¹³C NMR of (*E*)-2-(dec-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2u)⁶

Figure S63: ¹¹B NMR of (*E*)-2-(dec-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**2u**)

Figure S64: ¹H NMR of (*E*)-(2-(Allyloxy)vinyl)benzene (3a)⁸

Figure S65: ¹³C NMR of (*E*)-(2-(Allyloxy)vinyl)benzene (3a)⁸

Figure S66: ¹H NMR of Potassium trans-styryltrifluoroborate (3b)⁹

Figure S67: ¹³C NMR of Potassium trans-styryltrifluoroborate (3b)⁹

Figure S68: ¹H NMR of (*E*)-(2-Iodovinyl)benzene (3c)¹⁰

Figure S70: ¹H NMR of (*E*)-4-Styryl-1,1'-biphenyl (**3d**)¹¹

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Figure S71: ¹³C NMR of (*E*)-4-Styryl-1,1'-biphenyl (**3d**)¹¹

Figure S72: ¹H NMR of (*E*)-(2-Azidovinyl)benzene (3e)¹⁰

Figure S73: ¹³C NMR of (*E*)-(2-Azidovinyl)benzene (3e)¹⁰

Determination of the by-product formation from crude reaction mixture.

Figure S74: ¹H NMR of crude reaction mixture of phenyl acetylene and HBpin in CDCl₃

Figure S75: ¹¹B NMR of crude reaction mixture of phenyl acetylene and HBpin in CDCl₃¹⁵

II. Chemoselective hydroboration of phenyl acetylene over ester

^aYields were calculated based on ¹H NMR, Using 1,3,5-trimethoxybenzene as an internal standard.

III. References:

- 1. A. Bismuto, S. P. Thomas, M. J. Cowley, Angew. Chem., 2016, 55, 15356.
- S. Chen, L. Yang, D. Yi, Q. Fu, Z. Zhang, W. Liang, Q. Zhang, J. Ji, W. Wei, *RSC Adv.*, 2017, 7, 26070.
- 3. C. M. Deng, Y. F. Ma. Y. M. Wen, Chem. Select., 2018, 3, 1202.
- 4. S. Mandal, P. K. Varma, K. Geetharani, Chem. Commun., 2018, 54, 13690.
- 5. D. P. Ojha, K. R. Prabhu, Org. Lett., 2016, 18, 432.
- 6. R. Mamidala, V. K. Pandey and A. Rit, Chem Commun., 2019, 55, 989.
- 7. M. Magre, B. Maity, A. Falconnet, L. Cavallo, M. Rueping, Angew. Chem. Int. Ed., 2019, 58, 7025.
- 8. Ryan E. Shade, Alan M. Hyde, John-Carl Olsen, Craig A. Merlic, J. Am. Chem. Soc., 2010, 132, 1202.
- 9. C. Cazorla, E. Métay and M. Lemaire, Tetrahedron, 2011, 67, 8615.
- 10. H. Yang, Y. Li, M. Jiang, J. Wang and H. Fu, Chem. Eur. J., 2011, 17, 5652.
- 11. S. Wang, H. Song, X. Wang, N. Liu, H. Qin and C. Zhang, Chem Commun., 2016, 52, 11893.
- 12. S. Mandal, S. Mandal, K. Geetharani, Chem. Asian. J., 2019, 14, 4553.
- 13. J. Bhattacharjee, A. Harinath, K. Bano, T. K. Panda, ACS Omega, 2020, 5, 1595.
- 14. X. Zeng, C. Gong, H. Guo, H. Xu, J. Zhang, J. Xie, New J. Chem., 2018, 42, 17346.
- (a) W. Clegg, A. J. Scott, C. Dai, G. Lesley, T. B. Marder, N. C. Norman, L. J. Farrugia, *Acta Cryst. C.*, 1996. 52, 2545-2547; (b) M. R. Espinosa, D. J. Charboneau, A. G. de Oliveira, N. Hazari, *ACS Catal.*, 2019, 9, 301.