Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Growth of Cu-BTC MOFs on dendrimer-like porous silica nanospheres for catalytic aerobic epoxidation of olefins

Zihao Zhou ^a, Xiujuan Li ^a, Yulin Wang ^a, Yi Luan ^{a, *}, Xiaoyu Li ^{b,*}, Xin Du ^{a,*}

^a School of Materials Science and Engineering, University of Science and Technology, Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China.

* E-mail addresses: yiluan@ustb.edu.cn, duxin@ustb.edu.cn

^b National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, Beijing 100190, China

* E-mail addresses: lixy@ipe.ac.cn

Sample	<i>L</i> -Ascorbic acid (mg)	0.01 M Cu(NO ₃) ₂ solution (mL)	NH ₃ ·H ₂ O (µL)	Weight percentage of Cu ₂ O calculated by weighing (wt.%) ^a	Particle size of Cu ₂ O (nm)
DPSNs@Cu2O-1	17.5	12.5	15	5±2	10±5
DPSNs@Cu2O-2	35	25	30	10±5	20±8
DPSNs@Cu ₂ O-3	70	50	60	20±5	30±9
DPSNs@Cu2O-4	210	150	240	60±15	45±13

Table S1. Experimetal parameters of synthesis of the DPSNs@Cu₂O and their properties.

[a] The value is obtained by weighing the mass change of the sample before and after the preparation process.

Table S2. Experimetal	parameters of sy	ynthesis of the	DPSNs@Cu-B7	ΓC and their p	roperties.
-----------------------	------------------	-----------------	-------------	----------------	------------

Sample	Precursor	Weight percentage of the copper element via ICP-AES (wt.%)	Weight percentage of Cu-BTC calculated by ICP-AES (wt.%) ^a	Weight percentage of Cu-BTC calculated by weighing (wt.%) ^b	Particle size of Cu-BTC (nm)
DPSNs@Cu-BTC-1	DPSNs@Cu ₂ O-1	1.38	6.57	5±2	20±5~50±10
DPSNs@Cu-BTC-2	DPSNs@Cu2O-2	4.00	17.33	17±5	20±5~50±10
DPSNs@Cu-BTC-3	DPSNs@Cu ₂ O-3	9.24	33.87	40±5	20±5~50±10
DPSNs@Cu-BTC-4	DPSNs@Cu2O-4	30.95	69.28	72±15	40±10~90±18

[a] Calculate the molar amount of copper through ICP-AES datas, and thus calculate the actual value

of weight and percentage of Cu-BTC. Cu-BTC= C₁₈H₁₂O₁₅Cu₃ [1]

[b] The value is obtained by weighing the mass change of the sample before and after the preparation process.

Fig. S1. TEM images of DPSN (a) and Cu_2O (b).

Fig. S2. TEM images of DPSN@Cu-BTC through different synthesis methods: (a) Hydrothermal synthesis (b) Ultrasonic synthesis, (c) Ethanol reflux method, (d) Layer by layer coating.

Fig. S3. X-ray diffraction patterns of DPSNs@Cu₂O: (a) DPSNs@Cu₂O-1, (c) DPSNs@Cu₂O-2, (d) DPSNs@Cu₂O -3 and (e) Cu₂O.

Fig. S4. X-ray diffraction patterns of Cu-BTC: (a) Cu₂O, (b) Cu-BTC prepared from Cu₂O NPs, (c) Cu-BTC prepared by hydrothermal method.

Fig. S5. TEM images of Cu-BTC prepared from Cu₂O NPs.

Fig. S6. X-ray diffraction patterns of DPSNs@Cu-BTC: (a) Cu₂O, (b) DPSNs@Cu-BTC prepared from DPSNs@Cu₂O-70 wt%, (c) Cu-BTC prepared from Cu₂O NPs.

Fig. S7. TEM images of DPSNs@Cu₂O-4 (a) and DPSNs@Cu₋BTC-4 (b).

Fig. S8. TGA diagrams of Cu-BTC prepared from Cu₂O NPs.

Fig. S9. TEM images of DPSNs@Cu-BTC after ten cycles: (a) DPSNs@Cu-BTC-1, (b) DPSNs@Cu-BTC-2, (c) DPSNs@Cu-BTC-3; (d) X-ray diffraction patterns of DPSNs@Cu-BTC after ten cycles.

References

 [1] S. S.Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, A Chemically Functionalizable Nanoporous Material [Cu₃(TMA)₂(H₂O)₃]n, Science 283 (1999) 1148–1150.