Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary material

Fabrication of a functionalized magnetic covalent organic framework composite as an efficient

adsorbent for sulfonamides extraction from food samples

Jichao Liu¹, Guoliang Li^{1*}, Di Wu², Xianlong Zhang¹, Liangbin Hu¹ and Jianghua Liu^{1*}

¹ School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an

710021, China.

² Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19

Chlorine Gardens, Belfast, BT9 5DL, United Kingdom

Corresponding author ()

Mailing address: Shaanxi University of science and technology, Weiyang District, Xi'an City, Shaanxi Province, China.

Email address: 61254368@163.com, Fax: 029-86168293

1. Synthesis of Fe₃O₄ NPs

The magnetic Fe_3O_4 NPs were synthesized based on our previous work [1]. In brief, $FeCl_3 \cdot 6H_2O$ (1.35 g) and NH₄OAc (3.85 g) were firstly dispersed in ethylene glycol (70 mL). After mechanically stirring for 60 min at the room temperature, the mixture was transferred into a Teflon-lined stainless-steel autoclave. The reaction was carried out at 200 °C for 16 h. And then, the product was collected via a magnet and washed with ethanol and ultrapure water, successively. Finally, the obtained product was dried in a vacuum oven at 60 °C for 12 h.

2. Synthesis of Fe₃O₄@TbBd microspheres

Typically, Fe₃O₄ NPs (0.15 g) were added into DMSO (50 mL) with Tb (0.3 mmol) and Bd (0.45 mmol) [2]. Then, the mixture was ultrasonicated for 5 min. After that, anhydrous acetic acid (2 mL) was added slowly into the mixture. After incubation for 15 min at room temperature, the prepared Fe₃O₄@TbBd microspheres were collected by using a magnet and washed with tetrahydrofuran and anhydrous ethanol successively, then dried in vacuum at 50 °C for 8 h.

3. Synthesis of Fe₃O₄@TbBd-COOH composites

Firstly, the Fe₃O₄@COF-Au microspheres were synthesized [3]. In brief, Fe₃O₄@TbBd (0.06 g) was dissolved in MeOH (30 mL), 1% HAuCl₄·4H₂O (320 μ L) was added dropwise into the mixture, then the mixture was stirred for 4 h at 0 °C. Subsequently, 0.10 mol/L NaBH₄ methanol solution (1 mL) was added slowly stirring for another 3 h. The obtained precipitate was separated with a help of magnet, washed with methanol and dried under vacuum for 12 h at 60 °C. After that, the Fe₃O₄@TbBd-COOH microspheres were synthesized through MAA as the functionalized chemical to modify Fe₃O₄@TbBd-Au (0.05 g) was added to 0.29 mM MAA ethanol solution (10 mL) with stirring for 24 h at room temperature. The product was collected with magnet, washed by absolute

ethyl alcohol and distilled water, and dried under vacuum for 8 h at 50°C [5]. Finally, the Fe_3O_4 @TbBd-COOH composites were synthesized.

Sulfisoxazole (SFZ) pKa = 5.00

Fig. S1 Chemical structures and pKa values of the target SAs.

Fig. S2 The comparison of the extraction efficiency in different solvents.

Fig. S3 The TGA of the Fe_3O_4 @TbBd-COOH.

Fig. S4 Adsorption kinetics of SAs on Fe₃O₄@TbBd-COOH. (a) two-parameter fit of $ln(q_e-q)$ with k_1

using Eq. (2); (b) two-parameter fit of t/q with k_2 using Eq. (3).

Fig. S5 The reused times of the Fe₃O₄@TbBd-COOH towards seven SAs.

Fig. S6 The typical chromatograms of (a) blank chicken sample spiked with 50 μg/kg and (b) real chicken sample (Peak identification: 1, SM1; 2, SM2; 3, SMT; 4, SMM; 5, SCP; 6, SMX; 7, SFZ).

Fig. S7 The typical chromatograms of (a) blank pork sample spiked with 50 μg/kg and (b) real pork sample (Peak identification: 1, SM1; 2, SM2; 3, SMT; 4, SMM; 5, SCP; 6, SMX; 7, SFZ).

Analyte	Precursor ions (m/z)	Product ions (m/z)	Declustering potential (V)	Collision energy (e V)	Retention time (min)
SM1	265.2	156.0*	43.1	21.4	5.82
		172.2			
SM2	279.1	124.0*	42.3	26.8	6.73
		108.3			
SMT	271.0	156.1*	26.0	27.5	7.14
		215.3			
SMM	281.1	156.2*	27.8	23.5	8.28
		108.1			
SCP	285.2	156.1*	100.4	39.5	8.64
		107.8			
SMX	254.2	156.0*	42.0	20.0	9.35
		108.2			
SFZ	268.1	156.2*	32.5	19.2	9.81
		108.2			

Table S1. Optimized HPLC-MS/MS conditions for the detection of SAs

* The product ion used for quantification.

Analyte		pseudo-first order	r	pseudo-second order						
	\mathbf{k}_1	q _e (mg/g)	R ²	k ₂	$q_e (mg/g)$	R ²				
SM1	0.3056	4.465	0.9484	1.1165	8.997	0.9968				
SM2	0.4593	3.009	0.9023	1.2576	8.983	0.9954				
SMT	0.4389	3.113	0.7907	3.0107	8.681	0.9995				
SMM	0.4165	5.439	0.8765	0.8651	8.670	0.9903				
SCP	0.371	2.049	0.9439	3.5876	8.642	0.9998				
SMX	0.380	2.756	0.9142	2.2459	9.004	0.9993				
SFZ	0.4593	3.009	0.9023	2.0087	9.192	0.9981				

Table S2. The kinetic parameters and coefficients of the pseudo-first order and pseudo-second order

adsorption kinetic models for SAs onto $Fe_3O_4@TbBd\text{-}COOH$

Analyte	linear range (µg/kg)	linearity eq	R ²	RSD (intra- day %)	RSD (inter- day %)	LODs (µg/kg)	LOQs (µg/kg)
SM1	0.5-100	y = 385x + 157	0.9987	2.8	4.2	0.1	0.3
SM2	0.5-100	y = 703x + 286	0.9995	4.3	5.3	0.2	0.7
SMT	1-100	y = 289x + 369	0.9998	5.3	6.5	0.4	1.3
SMM	1-100	y = 314x + 493	0.9997	3.6	4.8	0.4	1.3
SCP	1-100	y = 76x + 66	0.9994	4.2	5.1	0.3	1.0
SMX	0.5-100	y = 316x + 648	0.9993	3.9	5.6	0.3	1.0
SFZ	0.5-100	y = 506x + 429	0.9996	4.4	6.2	0.1	0.3

Table S3. Calibration curve equations, correlation coefficients (R^2), LODs and LOQs for SAs in a

chicken sample

Analyte	linear range (µg/kg)	linearity eq	R ²	RSD (intra- day %)	RSD (inter- day %)	LODs (µg/kg)	LOQs (µg/kg)
SM1	0.5-100	y = 270x + 249	0.9998	3.6	5.3	0.1	0.3
SM2	0.5-100	y = 525x + 289	0.9999	4.2	5.7	0.1	0.3
SMT	0.5-100	y = 156x + 396	0.9997	2.8	4.6	0.2	0.7
SMM	0.5-100	y = 185x + 405	0.9998	5.2	6.8	0.3	1.0
SCP	1-100	y = 49x + 126	0.9996	5.1	6.4	0.4	1.2
SMX	0.5-100	y = 170x + 538	0.9999	3.8	5.3	0.2	0.7
SFZ	0.5-100	y = 326x + 324	0.9995	4.7	5.9	0.1	0.3

Table S4. Calibration curve equations, correlation coefficients (R^2), LODs and LOQs for SAs in a pork

sample

Analytes			Sample 1					Sample	2		Sample 3				
	ME	E Recovery %			RSD %	ME	Recovery %			RSD %	ME		Recovery %		RSD %
		Low	Middle	High	_		Low	Middle	High	_		Low	Middle	High	_
SM1	0.97	85.34	86.11	86.68	4.6	0.95	86.26	85.69	86.44	4.1	0.98	85.67	86.34	85.82	4.2
SM2	0.92	88.69	89.53	90.19	4.9	0.97	89.03	89.79	88.58	4.5	1.02	88.28	88.95	89.43	4.5
SMT	1.03	93.52	92.84	92.43	5.4	1.04	92.85	91.64	92.28	4.8	1.05	93.39	93.82	92.65	4.2
SMM	0.95	97.61	99.27	97.69	6.9	1.02	98.11	99.42	97.23	5.5	0.97	97.94	98.65	98.72	5.9
SCP	0.98	89.71	88.64	89.95	5.7	0.96	89.18	89.78	90.34	4.2	0.98	90.64	90.23	89.75	4.3
SMX	1.04	96.02	97.58	98.66	4.3	0.98	95.64	96.26	96.87	4.6	1.03	96.36	97.24	96.68	4.8
SFZ	1.05	100.22	99.63	101.74	5.2	1.03	101.47	102.61	101.82	4.5	1.02	99.78	100.64	99.23	5.7

Table S5. Recovery and precision values of SAs from different spiked levels by the proposed method in beef samples

Analytes			Sample 1					Sample	2		Sample 3				
	ME	Recovery %			RSD %	ME	Recovery %			RSD %	ME	Recovery %			RSD %
		Low	Middle	High	_		Low	Middle	High			Low	Middle	High	_
SM1	0.95	86.68	86.29	85.77	5.1	0.97	86.28	85.96	85.47	5.6	0.96	86.23	85.75	85.56	5.2
SM2	0.98	90.12	91.35	90.64	4.6	0.93	89.68	90.32	91.51	6.7	0.95	91.47	90.58	90.29	5.3
SMT	0.96	94.31	94.58	93.85	4.3	0.95	93.56	94.49	94.82	5.4	1.02	92.86	93.45	94.68	6.2
SMM	1.01	96.74	97.24	97.62	5.5	0.96	97.25	96.81	96.54	5.1	1.04	96.52	95.86	96.77	5.6
SCP	0.97	91.82	93.29	91.57	5.9	1.03	90.37	91.26	92.43	5.8	0.97	92.34	91.08	91.59	5.1
SMX	0.94	95.65	96.82	97.25	6.4	1.02	96.52	96.89	97.24	4.7	0.94	95.86	96.31	97.42	6.3
SFZ	1.03	99.85	101.34	99.36	5.3	0.96	98.76	99.21	100.53	6.5	0.98	99.27	99.83	101.64	5.4

Table S6. Recovery and precision values of SAs from different spiked levels by the proposed method in chicken samples

Analytes			Sample 1					Sample	2		Sample 3				
	ME	Recovery %			RSD %	ME	Recovery %			RSD %	ME	Recovery %			RSD %
		Low	Middle	High	_		Low	Middle	High			Low	Middle	High	_
SM1	0.96	86.94	85.63	85.78	6.1	0.95	85.62	86.36	85.67	5.3	0.98	85.86	86.52	87.77	5.2
SM2	1.03	90.39	91.42	90.65	5.6	0.98	91.23	90.66	90.48	4.8	0.93	90.82	90.49	92.11	5.4
SMT	1.02	93.76	94.38	94.51	5.3	1.03	94.52	94.83	93.56	5.1	0.95	94.28	94.83	93.42	4.9
SMM	0.95	96.85	96.57	97.36	4.8	0.97	96.82	97.37	98.56	5.7	0.96	96.57	95.88	97.24	5.5
SCP	0.97	90.56	91.23	91.87	5.4	0.98	91.28	91.76	92.15	4.9	1.02	91.68	92.43	91.89	5.2
SMX	0.94	94.87	96.34	96.57	5.5	0.96	95.86	96.48	95.39	5.2	1.05	95.39	96.48	94.82	5.6
SFZ	0.92	98.82	99.64	99.39	5.3	1.03	101.34	100.46	99.53	5.4	0.97	98.64	101.34	99.64	6.1

Table S7. Recovery and precision values of SAs from different spiked levels by the proposed method in pork samples

References

- N. Li, D. Wu, N. Hu, G. Fan, X. Li, J. Sun, X. Chen, Y. Suo, G. Li and Y. Wu, Effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres. J. Agric. Food Chem., 2018, 66(13), 3572-3580.
- C. Gao, G. Lin, Z. Lei, Q. Zheng, J. Lin and Z. Lin, Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins. *J. Mater. Chem. B*, 2017, 5, 7496-7503.
- 3. Y. Su, D. Wu, J. Chen, G. Cheng, N. Hu, H. Wang, P. Wang, H. Han, G. Li and Y. Wu, Ratiometric Surface Enhanced Raman Scattering Immunosorbent Assay of Allergenic Proteins via Covalent Organic Framework Composite Material Based Nanozyme Tag Triggered Raman Signal "Turnon" and Amplification. *Anal. Chem.*, 2019, 91(18), 11687-11695.
- 4. X. Liu, Z. Sun, G. Chen, W. Zhang, Y. Cai, R. Kong, X. Wang, Y. Suo and J. You, Determination of phthalate esters in environmental water by magnetic Zeolitic Imidazolate Framework-8 solidphase extraction coupled with high-performance liquid chromatography. J. Chromatogr. A, 2015, 1409, 46-52.
- T. Zhang, X. Zhang, X. Yan, L. Kong, G. Zhang, H. Liu, J. Qiu, and K. L. Yeung, Synthesis of Fe₃O₄@ZIF-8 magnetic core-shell microspheres and their potential application in a capillary microreactor. *Chem. Eng. J.*, 2013, 228, 398-404.