Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplement files

Materials and methods

Chemicals and materials

 $K_{10}P_2W_{17}O_{61}$ nH₂O (P₂W₁₇) was prepared according to the literature method and identified by IR spectra (Figure S1), UV-vis absorption spectra (Figure S2) and cyclic voltammetry (Figure S3).

Figure S2. The Uv-vis spectra of K₁₀P₂W₁₇O₆₁·nH₂O

Figure S3. CV curve of $K_{10}P_2W_{17}O_{61}$ nH₂O in HOAc-NaOAc solution (pH = 3.5).

The mass loading of different samples: NW-P₂W₁₇ is 0.0401g, FTO-P₂W₁₇ is 0.0144g, FTO-TiO₂ is 0.0257g.

Results and discussion

Figure S4. The SEM images of TiO₂ NW (inset: the cross-sectional images of prepared films)

Figure S5. The SEM images of FTO-P₂W₁₇ (inset: the cross-sectional images of prepared films)

Figure S6. 2D AFM images of (a) $FTO-P_2W_{17}$ and 3D AFM images of (b) $FTO-P_2W_{17}$

Figure S7. High-resolution XPS spectra for C1s(a), P2p (b) and W 4f (c) of FTO-P₂W₁₇ film.

Figure S8. High-resolution XPS spectra for C 1s (a) and P 2p (b) of NW-P₂W₁₇ film.

Figure S9. The SEM of NW- P_2W_{17} film after cycle stability test.

Figure S10. Cycle stability of $FTO-P_2W_{17}$ film at 600 nm under square wave potentials of -1.5 V and +1.5 V.