Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Information

Biomolecule-assisted synthesis of porous network-like Ni_3S_2 nanoarchitectures assembled with ultrathin nanosheets as integrated negative electrodes for high-performance lithium storage

Bo Wang,*^a Yue Li,^a Kun Liu,^a Jinhui Zhang,^a and Xiaoyu Wu,*^b

 ^a Department of Environmental and Chemical Engineering, Tangshan University, Tangshan 063000, P. R. China.
 ^b Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China

* Corresponding author. Tel: +86-315-2010649; Fax: +86-315-2010649.
E-mail address: <u>wangbo@buaa.edu.cn</u>.
E-mail address: <u>wuxy3@sustech.edu.cn</u>.

Fig. S1 Chemical structure of L-cysteine.

Fig. S2 SEM images of the (a) bare NF and (b and c) as-prepared Ni_3S_2 powders at

different magnifications.

Fig. S3 N_2 adsorption-desorption isotherms of the as-prepared $Ni_3S_2@NF$ composites.

Fig. S4 XRD pattern of the as-prepared Ni₃S₂@NF composites under different

reaction temperatures.

Fig. S5 The relationship between log (*i*) and log (*v*) of (a) Ni₃S₂@NF and (b) Ni₃S₂ powder pasted electrodes.

Table S1 The elemental composition of the $Ni_3S_2@NF$ composites from the EDS

(F '	(1)
$(H1\sigma)$	(1
$\backslash IIG.$	JI

	5		
Element	Weight %	Atomic %	
C K	06.47	09.15	
O K	03.44	06.50	
Ni K	67.64	51.22	
S K	22.45	33.13	

Table S2. Comparison of electrochemical performance of the Ni₃S₂@NF in this work

Type of material	Initial reversible specific capacity	Specific capacity after cycling	Capacity retention	Referance
Ni ₃ S ₂ /C fibers	550 mAh g ⁻¹ at 50 mA g ⁻¹	421.4 mAh g ⁻¹ after 50 cycles	35.7% from 200 to 2000 mA g ⁻¹	1
Electrodeposition of Ni ₃ S ₂ /Ni ₄ composites	338 mAh g ⁻¹ at 170 mA g ⁻¹	322 mAh g ⁻¹ after 100 cycles	\sim 60% from 170 to 1700 mA g ⁻¹	2
Ni ₃ S ₂ @N-doped carbon core/shell arrays	420 mAh g ⁻¹ at 100 mA g ⁻¹	368 mAh g ⁻¹ after 100 cycles	91.6% from 100 to 2000 mA g ⁻¹	3
$3D$ porous Ni_3S_2 electrode	593 mAh g ⁻¹ at 150 mA g ⁻¹	622 mAh g ⁻¹ after 55 cycles	73% from 150 to 1200 mA g ⁻¹	4
Ni_3S_2 nanoslices anchored on reduced graphene oxide	608.4 mAh g ⁻¹ at 100 mA g ⁻¹	465 mAh g ⁻¹ after 100 cycles	67.2% from 100 to 1000 mA g ⁻¹	5
Porous Ni_3S_2 nanosheets Network grown on NF	987.8 mAh g ⁻¹ at 200 mA g ⁻¹	569.86 mAh g ⁻¹ after 300 cycles	45.4% from 200 to 3200 mA g ⁻¹	This work

with some other Ni₃S₂-based electrodes reported in recent literature.

References

- T. Du, H. Zhu, B. B. Xu, C. Liang, M. Yan, and Y. Z. Jiang, ACS Appl. Energy Mater., 2019, 2, 4421.
- 2 C. W. Su, J. -M. Li, W. Yang, and J. -M. Guo, J. Phys. Chem. C. 2014, 118, 767.
- Z. J. Yao, L. M. Zhou, H. Y. Yin, X. L. Wang, D. Xie, X. H. Xia, C. D. Gu, and J.
 P. Tu, *Small*, 2019, 15, 1904433.
- 4 J. S. Zhu, and G. Z. Hu. Mater. Lett. 2016,166, 307.
- 5 P. Yu, L. Wang, J. Q. Wang, D. D. Zhao, C. G. Tian, L. Zhao, and H. T. Yu, *RSC Adv.*, 2016, 6, 48083.