Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

For

The influences of the structure of thiophene-based conjugated microporous polymers on the fluorescence sensing properties

Tong-Mou Geng*, Chen Hu, Min Liu, Can Zhang, Heng Xu, and Xie Wang

AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China

Corresponding Author:

Tongmou Geng

Mailing Address: School of Chemistry and Chemical Engineering, Anqing Normal University,

Anqing 246011, China

Telephone: +86-0556-5500090

Fax: +86-0556-5500090

E-mail addresses: gengtongmou@aqnu.edu.cn (TM Geng).

S1. Experimental Section

S1.1. Materials

Tetrakis-(triphenylphosphine) palladium (0) (Pd(PPh₃)₄), cupric iodide were obtained from J&K Scientific. 2,3,4,5-tetraphenylthiophene (TPTh), 1,3,5-triethynylbenzene (TEB), 1,4-diethynylbenzene (DEB), 2,3,4,5-tetrabromothiophene (TBrTh), diisopropylamine (DIPA), dimethylformamide (DMF), dichloromethane were purchased from Aladdin. All chemicals were used without any purified.

S1.2 Synthesis of 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (BBDTh)

Admixture of Br₂ (7.06 mmol, 1.13 g) and CH₂Cl₂ (15 mL) was dropwise added into a mixture of 2,3,4,5-tetraphenylthiophene (3.53 mmol, 1.3715 g) and CH₂Cl₂ (20 mL). The dropwise addition process lasts for 15 min., and the solution is brown-red, and stirred at room temperature for 16 hours. After 16 hours, the mixture was poured into 40 mL of absolute ethyl alcohol and a large amount of yellow precipitate was produced. The suction was then carried out and washed twice with methanol and finally dried under vacuum at 50 °C for 10 h. Yield was 83.6%. FT-IR (cm⁻¹): 3343, 1636, 1477, 1390, 1072, 931, 701. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.22, 7.32, 7.37, 7.48, 7.49. Elemental analysis of BBDTh: Calculated value (%): C 61.56, H 3.22, S 5.87; Found (%): C 61.06, H 3.153, S 5.748.

Fig. S1. FTIR spctrum of BBDTh.

Fig. S2. ¹H NMR spectra of BBDTh (DCCl₃).

S1.2. Synthesis of the CMPs

TTPTh: A mixture of 2,5-bis(4-bromophenyl)-3,4-diphenylthiophene (BBDTh) (2.0 mmol, 1.0930 g), 1,3,5-triethynylphenyl (2.0 mmol, 0.3006 g), tetrakis-(triphenylphosphine) palladium (0) (Pd(PPh₃)₄) (20 mg), CuI (20 mg), (12.4 mL), and DIPA (12.4 mL) react in nitrogen in an atmosphere of 100 °C. The solution is brown red. Three days later, the reaction stopped. After cooling at room temperature, the solid was washed three times with methanol (10 mL) and chloroform (10 mL) for

each, then the product was extracted with methanol, chloroform and acetone for 24 hours using a Soxhlet extractor, respectively. The solid was dried at 50 °C in a vacuum oven for 24 h to afford brown powder (Yield was 62.72 %). FT-IR (cm⁻¹): 3442, 1636, 1384, 698. ss ¹³C NMR (400 MHz) δ (ppm): 135.97, 130.33, 127.55, 90.19, 82.00, 76.96. Elemental analysis of TTPTh: Calculated value (%): C 88.98, H 4.22, S 6.60; Found (%): C 87.50, H 4.465, S 6.895.

DBTh: This polymer was synthesized using the similar procedures as described for TTPTh. 2,3,4,5-tetrabromothiophene (1.0 mmol, 0.3997 g), 1,3,5triethynylbenzene (TEB) (3 mmol, 0.3784 g), tetrakis-(triphenylphosphine) palladium(0) (Pd(PPh₃)₄) (40 mg), CuI (20 mg), DMF (8 mL), and DIPA (8 mL) were used. DBTh was obtained as a brown powder (0.5157 g, yield: 81.57 %) IR (KBr, v; cm⁻¹): 3445, 2202, 1657, 1504, 1461, 1396, 834, and 545. ss ¹³C NMR (400 MHz) δ (ppm): 130.77, 122.08, 98.80, 82.87, 76.96. Elemental analysis of DBTh: Calculated value (%): C 86.72, H 3.64, S 9.65; Found (%): C 84.32, H 4.916, S 9.764.

TBTh: This polymer was synthesized using the similar procedures as described 2,3,4,5-tetrabromothiophene TTPTh. (1.0)mmol, 0.3997 1,3,5for g), triethynylbenzene (TEB) (2 mmol, 0.3004 g), tetrakis-(triphenylphosphine) (Pd(PPh₃)₄) (40 mg), CuI (20 mg), DMF (8 mL), and DIPA (8 mL) palladium(0)were used. TBTh was obtained as abrown powder (0.5012 g, yield: 73.15 %). IR (KBr, v; cm⁻¹): 3429, 3298, 2198, 1646, 1576, 1412, 1308, 822, and 632. ss ¹³C NMR (400 MHz) δ (ppm): 132.60, 122.26, 96.11, 80.56. Elemental analysis of TBTh: Calculated value (%): C 85.69, H 2.88, S 11.44; Found (%): C 83.34, H 2.934, S 11.726.

Fig. S3. FT-IR spectra of CMPs and monomer. (a) TTPTh, (b) DBTh, (c) TBTh, and (d) TBrTh.

S1. 3. Methods

Infrared spectra were recorded on an iS50 FT-IR spectrometer (400 to 4000 cm⁻¹) by using KBr pellets. Solid-state ¹³C CP/MAS NMR measurements were recorded on a Bruker AVANCE III 400 WB spectrometer at a MAS rate of 5 kHz and a CPcontact time of 2 ms. UV–Vis spectra were recorded on an UV-2501PC spectrometer. Elemental analyses were carried out on a VARIO ELIII cube analyzer. Scanning electron microscopy was performed on a S-3400N microscope. Thermogravimetric analysis (TGA) measurements were performed on a CDR-4P TGA under N₂, by heating to 800 °C at a rate of 10 °C min⁻¹. X-ray diffraction (XRD) data were recorded on a XRD 600 diffractometer by depositing powder on glass substrate, from 20 =5° to 90° with 0.02° increment. The Brunauer-Emmett-Teller (BET) method was utilized to calculate specific surface area and pore volume, the Saito-Foley (SF) method was applied for estimation of pore size distribution. Fluorescence spectra

Samples were prepared as follows: dried CMPs powder (10 mg) ground with an agate mortar was added to 10 mL of organic solvents. After the resulting mixture was well dispersed with ultrasound, the dispersion colloid was obtained.

Fig. S4. PXRD patterns of TTPTh, DBTh, and TBTh.

Fig. S5. The SEM images of (a) TTPTh, (b) DBTh, and (c) TBTh.

Fig. S6. UV-Vis spectra of CMPs and the corresponding monomers: (a) TTPTh, (b) DBTh, and (c) TBTh.

Fig. S7. The excitation (black line) and fluorescence spectra (red line) of three solid

CMPs: (a) TTPTh, (b) DBTh, and (c) TBTh.

Fig. S8. The excitation (black line) and fluorescence spectra (red line) of solid monomers (a) TEB, (b) DEB, (c) BBDTh, as well as (d) model compound tetraphenylthiophene (TPTh).

Fig. S9. CIE chromaticity diagram of DBTh under ambient condition in various solvents: a) ACN, b) Acetone, c) DMF, d) DOX, e) Chloroform, f) THF, and g) EtOH (λ ex=410 nm).

Fig. S10. Normalized fluorescence spectra of the CMPs dispersed solution upon addition of NACs. (a) TTPTh (DNP: 5.0×10^{-4} mol L⁻¹, in chloroform, λ ex=360 nm), (b) DBTh (DNP: 1.5×10^{-4} mol L⁻¹, in DMF, λ ex=410 nm), and (c) TBTh (DNP: 2.0×10^{-4} mol L⁻¹, in THF, λ ex=362 nm) for different periods of time. (d) Normalized fluorescence intensity of the CMPs dispersed solution upon addition of DNP.

Fig. S11. Normalized fluorescence spectra of the CMPs dispersed solution upon addition of I₂. (a) TTPTh (I₂: 1.0×10^{-3} mol L⁻¹, in chloroform, λ ex=360 nm), (b) DBTh (I₂: 5.0×10^{-3} mol L⁻¹, in DMF, λ ex=410 nm), and (c) TBTh (I₂: 1.0×10^{-4} mol L⁻¹, in THF, λ ex=362 nm) for different periods of time. (d) Normalized fluorescence intensity of the CMPs dispersed solution upon addition of I₂.

Fig. S12. The changes of fluorescent spectra of (a) TTPTh, (b) DBTh, and (c) TBTh in chloroform, DMF, and THF upon addition of I_2 ; (d) Relative fluorescence intensity (I_0/I) of the TTPTh, DBTh, and TBTh in suspensions upon addition of various concentrations of I_2 ; (f) Stern–Volmer plots of TTPTh, DBTh, and TBTh with various concentrations of I_2 (1.0 mg mL⁻¹, excited at 360, 410, and 362 nm).

CMPs	The equation	Regression	The concentration	detection
		coefficient	range of NACs or I_2	limit
		(R)	$(mol L^{-1})$	(mol L ⁻¹)
TTPTh	I ₀ /I=0.9913+1.10×10 ⁴ [DNP]	0.9974	0 to 1.0×10 ⁻⁴	5.47×10 ⁻¹⁰
DBTh	$I_0/I=1.0062+5.76\times10^4[DNP]$	0.9996	0 to 1.5×10 ⁻⁵	1.56×10 ⁻¹⁰
TBTh	$I_0/I=0.9502+9.59\times10^3[DNP]$	0.9991	5.0×10 ⁻⁶ to 1.0×10 ⁻⁴	9.38×10 ⁻⁹
TTPTh	$I_0/I=0.9972+1.20\times10^4[I_2]$	0.99997	0 to 2.5×10 ⁻⁵	1.74×10 ⁻⁸
DBTh	$I_0 / I = 0.9725 + 4.52 \times 10^4 [I_2]$	0.9937	0 to 1.5×10 ⁻⁵	3.32×10 ⁻¹²
TBTh	$I_0/I=0.9691+3.15\times10^3[I_2]$	0.9965	5.0×10 ⁻⁶ to 1.0×10 ⁻⁴	1.66×10-9

Table S1. The equation of I_0/I of the CMPs to the concentrations of DNP or I_2 for suspension in chloroform (TTPTh), DMF (DBTh), and THF (TBTh).

CMPs	Analyte	K _{sv}	detection	Refs
		$(mol L^{-1})$	limit	
			$(mol L^{-1})$	
PTPATTh	PA	1.17×10 ³ (DOX)	6.39×10 ⁻⁸	Sensor. Actuat. B-Chem. 2017, 244,
		5.00×10 ³ (THF)	3.01×10-9	334–343.
TTPT	o-NP	6.20×10 ³	2.18×10-9	Polym. Chem. 2018, 9, 777–784.
PTThP-2	iodine	1.99×10 ³	7.54×10 ⁻⁸	J. Polym. Res. 2019, 26, 113–122.
PTThP-3		5.09×10 ³	2.95×10 ⁻⁸	
РТРТВ	<i>p</i> -AP	7.08×10 ⁴	4.2×10 ⁻⁶	Polym. Chem. 2018, 9(27), 3832–
				3839.
SNPs	NB	-	-	Angew. Chem. Int. Edit. 2018,
				57(43), 14188–14192.
SN-1	PA	2.78×10 ⁴	-	ACS Appl. Bio Mater. 2018, 1,
SN-2	PA	1.31×10 ⁴	-	473–479.
TTPTh	DNP	1.10×10 ⁴	5.47×10 ⁻¹⁰	This work.
DBTh	DNP	5.76×10 ⁴	1.56×10 ⁻¹⁰	
TBTh	DNP	9.59×10 ³	9.38×10-9	
TTPTh	iodine	1.20×10 ⁴	1.74×10 ⁻⁸	
DBTh	iodine	4.52×10 ⁴	3.32×10 ⁻¹²	
TBTh	iodine	3.15×10 ³	1.66×10 ⁻⁹	

Table S2. Summary of K_{sv} and LODs of thiophene-based CMPs for fluorescence sensing to NACs and iodine.

p-AP—p-nitroaniline

materials	BET	Methods or detection limit		Refs	
	$(m^2 g^{-1})$	$K_{sv}(L \text{ mol } ^{-1}) \qquad (\text{mol } L^{-1})$			
-	-	SPE and UHPLC 1.85×10 ⁻¹⁰		Anal. Bioanal. Chem., 2013,	
		-QTR AP® MS	(34 ng/l)	405, 5875–5885.	
SBA-15 CMK-	660	CMK-3-GC	1.09×10 ⁻⁸	Anal. Chim. Acta, 2011, 695,	
3	1400	-MS method	$(0.002 \ \mu g \ mL^{-1})$	58–62.	
GO-MIP/GCE	-	electrochemical	4×10 ⁻⁷	Sensor. Actuat. B-Chem.,	
composites		sensor	(0.4 µM)	2012, 171–172, 1151–1158.	
SPE-MIPs	-	fluorescence	1×10-9	Chinese Chem. Lett., 2014,	
		detection	(1 nmol/L)	25, 1492–149.	
Dialysed	-	fluorescence	1.4×10 ⁻⁷	Talanta, 2019, 197, 159–	
caramel		detection	(0.14µM)	167.	
MOFs	-	-	-	J. Mater. Chem. A	
				2015, 3, 22369–22376.	
proximate	-	fluorescence	-	Tetrahedron Lett., 2015,56,	
pyrene units		detection 1×10 ⁴		2311–2314.	
TTPTh	564.97	1.10×10 ⁴	5.47×10 ⁻¹⁰	This work.	
DBTh	416.99	5.76×10 ⁴	1.56×10 ⁻¹⁰		
TBTh	521.30	9.59×10 ³	9.38×10-9		

Table S3. Summary of K_{sv} and LODs of other materials for determination of DNP.

Sample	BET	K_{sv}	LOD	Refs
	$(m^2 g^{-1})$	(L mol ⁻¹)	(mol L ⁻¹)	
ТТРА	308	2.38×10 ⁴	3.22 × 10 ⁻¹¹	Micropor. Mesopor. Mat. 2019,
TTDATA	491	4.33×10 ²	-	273, 163–170
TTMDATA	456	7.31×10 ²	-	
TS-TAD	828,	5.76×10 ³	1.56×10-9	Eur. Polym. J. 2019,
TS-TADP	783	5.59×10 ³	8.05×10 ⁻¹¹	115, 37–44
Cz-TPM	713.2	2372(I ⁻)	-	ACS Appl. Mater. Interfaces
				2017, 9 (25), 21438–21446
PTThP-2,	370.8	1.99×10 ³	7.54×10 ⁻⁸	J. Polym. Res. 2019, 26, 113–
PTThP-3	748.2	5.09×10 ³	2.95×10 ⁻⁸	122.
TTTAT	564.8	1.53×10 ⁵	2.98×10 ⁻¹² ,	Micropor. Mesopor. Mat. 2019,
TTDAT	44.1	9.07×10 ⁴	2.96×10 ⁻¹³	284, 468–475.
TDPA	56.52	1.85×10 ⁴	1.62×10 ⁻¹¹	J. Appl. Polym. Sci.
TTPBTA	2.486	6.56×10 ⁴	6.86×10 ⁻¹²	2019, 49255.
TDPDB	592.18	5.83×10 ⁴	2.57×10 ⁻¹²	Polym. Adv. Technol. 2020,
				31(6), 1388-1394.
TDP	261.9	6.10×10 ⁴	3.14×10 ⁻¹³	New J. Chem., 2020, 44, 2312-
РСРР	43.0	1.40×10 ⁵	2.46×10 ⁻¹²	2320.
TTPDP	187.5	2.02×10 ⁴	2.25×10 ⁻¹²	
TDTPAP	695.2	4.65×10 ³	3.25×10 ⁻¹⁰	
TDTPAPz	561.3	3.76×10 ³	2.47×10 ⁻¹¹	Environ. Sci. Pollut. Res.
TTDPz	13.5	1.10×10 ³	1.36×10 ⁻¹⁰	27(16), 20235-20245.
TBIM	8.12	1.16×10 ⁴	1.29×10 ⁻¹⁰	J. Mater. Chem. A, 2020, 8,
				2820–2826.
TTPTh	564.97	1.20×10 ⁴	1.74×10 ⁻⁸	This work.
DBTh	416.99	4.52×10 ⁴	3.32×10 ⁻¹²	
TBTh	521.30	3.15×10 ³	1.66×10 ⁻⁹	

Table S4. Summary of K_{sv} and LODs of POPs for fluorescence sensing to iodine

Fig. S13. Normalized absorption spectra of analytes and emission spectra of (a) TTPTh in chloroform (excitation wavelength: 360 nm), (b) DBTh in DMF (excitation wavelength: 410 nm), and (c) TBTh in THF (excitation wavelength: 362 nm).

Table S5. HOMO and LUMO calculations for CMPs, NACs and I_2 . All the molecular orbital calculations were performed with the Gaussian 09 D.01 program at the B3LYP/6-31G* level.

MO energy (eV)	TTPTh	DBTh	TBTh	I ₂	PA
LUMO	-1.726	-1.255	-2.063	-4.988	-3.898
НОМО	-5.424	-6.128	-5.628	-7.553	-8.273
MO energy (eV)	DNP	o-NP	m-NP	p-NP	NB
LUMO	-3.320	-2.711	-2.396	-2.222	-2.428
НОМО	-7.628	-6.797	-6.779	-6.721	-7.591
MO energy (eV)	m-DNB	p-DNB	DNT	p-NT	PhOH
LUMO	-3.135	-3.495	-2.977	-2.318	-0.3331
НОМО	-8.413	-8.358	-8.113	-7.364	-6.566

Fig. S14. HOMO and LUMO orbital diagrams of CMPs. The molecular orbital calculations were performed with the Gaussian 09 D.01 program at the B3LYP/6-31G (d) level.

Fig. S15. Fluorescent spectra of DBTh before and after annealing at different temperatures for 30 min in air.

Fig. S16. The practical application of DBTh as a chemosensor for DNP in sand samples. The addition of DNP (μ mol/5g): (a) 0.125, (b) 0.250.

Table S6. Spiked recoveries and RSDs (%, n=4) for the determination of DNP insand samples using the DBTh sensor.

Added	Added	Found	Found	Recovery
(µmol /5g)	(×10 ⁻⁶ mol L ⁻¹)	(×10 ⁻⁶ mol L ⁻¹)	(µmol/5g)	±RSD (%)
0.125	5.0	5.10	0.127	
0.125	5.0	4.70	0.117	
0.125	5.0	5.045	0.126	0.122±4.28
0.125	5.0	4.74	0.118	
Added	Added	Found	Found	Recovery
(µmol /5g)	(×10 ⁻⁶ mol L ⁻¹)	(×10 ⁻⁶ mol L ⁻¹)	(µmol/5g)	±RSD (%)
0.250	10.0	10.512	0.263	
0.250	10.0	9.693	0.242	
0.250	10.0	11.326	0.283	0.246±3.85
0.250	10.0	9.349	0.234	

Fig. S17. The practical application of DBTh as a chemosensor for I_2 in sand samples. The addition of I_2 (µmol/5g): (a) 0.025, (b) 0.050.

Added Added Found Found Recovery (×10-6 mol L-1) (×10⁻⁶ mol L⁻¹) ±RSD (%) $(\mu mol/5g)$ $(\mu mol/5g)$ 0.025 1.0 0.0213 0.852 0.025 0.954 1.0 0.0238 0.0234 ± 3.94 0.025 1.0 1.082 0.0271 0.025 1.0 0.863 0.0216 Recovery Added Added Found Found (×10⁻⁶ mol L⁻¹) (×10⁻⁶ mol L⁻¹) $(\mu mol/5g)$ $(\mu mol/5g)$ ±RSD (%) 0.050 0.0405 2.0 1.619 0.050 2.0 1.387 0.0347 0.0468 ± 3.53 0.050 2.0 1.994 0.0498 0.050 2.0 1.949 0.0487

Table S7. Spiked recoveries and RSDs (%, n=4) for the determination of I2 in sandsamples using a DBTh sensor.