Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Engineering Sulphur Vacancy in VS₂ as High Performing Zincion Battery with High Cyclic Stability

Bo-Si Yin,^{1,2} Si-Wen Zhang,^{1,2} Ting Xiong,³ Wen Shi,³ Ke Ke,¹ Wee Siang Vincent Lee, ^{3,*} Junmin Xue,^{3,*} Zhen-Bo Wang ^{1,2*}

1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and

Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001 China

2 State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001 China

3 Department of Materials Science and Engineering, National University of Singapore, 117576,

Singapore, Singapore

* Corresponding author. Email: wangzhb@hit.edu.cn (Z.B. Wang) Email: msexuejm@nus.edu.sg (J.M. Xue) Email: mseleew@nus.edu.sg (W.S.V. Lee)

Computational Methods

The calculations were performed using density-functional theory (DFT) with the generalized gradient approximation (GGA) of PBE.^[1] The projector augmented wave potentials ^[2] were employed as implemented in the vienna ab-initio simulation package (VASP).^[3] The plane-wave cutoff energy of 450 eV was chosen. The convergence for energy and the Hellmann–Feynman force were chosen as 1×10^{-6} eV and 0.01 eV, respectively. For the structural optimization of layer VS₂(001) with a $4 \times 2 \times 1$ supercell containing two S-V-S sandwich layers, the $3 \times 3 \times 1$ k-points sampling was employed. The spin polarization was considered throughout the calculations. To avoid the periodic interaction, a vacuum thickness of 15 Å for the sulfur vacancy and Zn adsorption studies were built. During the optimization process, the lattice constants for the supercell were fixed and all atoms were allowed to relax until the force on each atom was less than 0.001 eV Å⁻¹.

Figure S1: CV profile of P-VS₂

Figure S2: The corresponding plots of log (peak current) vs. log (scan rate) at each peak of P-VS₂

Figure S3: The corresponding plots of log (peak current) vs. log (scan rate) at each peak of D-VS₂

Figure S4: The Nyquist curve of the electrochemical impedance measurements (EIS) of P-VS₂ and D-VS₂ electrode.

Figure S5: The Nitrogen adsorption–desorption isotherm of P-VS₂ and D-VS₂ electrode.

Туре	Electrolyte	Cycle Stability(h)	Specific capacity (mAh g ⁻¹)	Ref.
D- VS ₂ nanosheet	ZnSO4	94% after 524h	262	This work
VS ₂ nanosheet	ZnSO ₄	98% after 109.5h	159.1	4
VS2@SS nanosheet	ZnSO4	90% after 336h	187	5
E-MoS ₂ nanosheet	ZnSO4	98.6% after 197.4h	202.6	6
MoS _{2-x} nanosheets	Zn(CF3SO3)2	87.8% after 191.2h	138.6	7
MoS ₂ nanosheets	Zn(CF3SO3)2	98.1% after 95.2h	168	8
MoS ₂ –O nanosheets	Zn(CF3SO3)2	-	232	9
Bi ₂ S ₃ nanoparticles	ZnSO4	100% after 161h	161	10
Na _{0.14} TiS ₂	Zn(CF ₃ SO ₃) ₂	98% after 720h	120	11

Table S1: The performance comparison of D-VS₂ with other metal dichalcogenides.

- 1 J. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 2 P. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 3 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15.
- 4 P. He, M. Y. Yan, G. B. Zhang, R. M. Sun, L. N. Chen, Q. Y. An and L. Q. Mai, *Adv. Energy Mater.*, 2017, **7**, 1601920
- 5 T. P. Jiao, Q. Yang, S. L. Wu, Z. F. Wang, D. Chen, D. Shen, B. Liu, J. Y. Cheng, H.
- F. Li, L. T. Ma, C. Y. Zhi and W. J. Zhang, J. Mater. Chem. A, 2019, 7, 16330-16338.
- 6 H. F. Li, Q. Yang, F. N. Mo, G. J. Liang, Z. X. Liu, Z. J. Tang, L. T. Ma, J. Liu, Z. C. Shi and C. Y. Zhi, *Energy Storage Mater.*, 2019, **19**, 94.
- 7 W. W. Xu, C. L. Sun, K. N. Zhao, X. Cheng, S. Rawal, Y. Xu and Y. Wang, *Energy Storage Mater.*, 2019, **16**, 527.
- 8 J. P. Liu, P. T. Xu, J. M. Liang, H. B. Liu, W. C. Peng, Y. Li, F. B. Zhang and X. B. Fan, Chem. Eng. J., 2020, **389**, 124405.
- 9 H. F. Liang, Z. Cao, F. W. Ming, W. L. Zhang, D. H. Anjum, Y. Cui, L. Cavallo and H. N. Alshareef, *Nano Lett.* 2019, **19**, 3199.
- 10 T. Xiong, Y. M. Wang, B. S. Yin, W. Shi, W. S. V. Lee and J. M. Xue, Nano-Micro Lett. 2020, **12**, 8.
- 11 W. Li, K. L. Wang, S. J. Cheng and Kai Jiang, Adv. Energy Mater. 2019, 9, 1900993.