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Electrochemical test

Electrochemical measurements including cyclic voltammetry (CV), linear scan
voltammogram (LSV) and stability were performed on an electrochemical workstation
(VMP3, Biologic, France) equipped with a three-electrode cell system. A rotating ring-
disk electrode (RRDE) of 5.61 mm in disk diameter loaded with electrocatalyst was used
as the working electrode with Ag/AgCl electrode as the reference electrode, and Pt wire
as the counter electrode. The oxygen reduction reaction was carried out in an O, saturated
0.1 M KOH aqueous solution. The stability test was collected at 0.8 V vs. Ag/AgCl with
a rotation speed of 400 rpm.

The working electrode was prepared as follows: 10.0 mg of catalyst were dispersed in
solvent mixture of 5 wt % Nafion solution (0.05 mL) and 2-propanol (0.95 mL) under
sonication for 1 h to form a homogeneous ink. Then 7 pL of the resulting suspension was
dropped onto a pre-polished rotating disk electrode (RRDE, Sg;g = 0.2475 ¢m?) and dried
at room temperature. For comparison, commercial Pt/C-20% electrocatalyst (Sigma-
Aldrich) was used.

The number of electrons transferred onto the as-prepared catalyst was calculated

according to the Koutecky-Levich equation:

(N T B B (1)

Where J is the measured current, Jx is the kinetic current, w is the electro rotating rate. B
is determined from the slope of the Koutecky-Levich (K-L) plots according to the Levich

equation as given below:

B=0.62nFC,(D,)* v (2)

where n represents the overall number of electrons transferred in oxygen reduction, F is
the Faraday constant (96485 C mol!), Cy is the bulk concentration of O, (1.2 x 10-% mol
cm3), Dy is the diffusion coefficient of O, in 0.1 mol L' KOH electrolyte (1.9 x 10~ ¢m?
s'1), v is the kinematic viscosity of the electrolyte (0.01 cm? s!).

The H,O, yield and electron transfer number were calculated from the following



equation:
H,0,; (%) =2001,/ (NI4+1,) 3)
n = 4ly/(I+-1/N) (4)
where /d and Ir are the disk and ring currents, respectively, and N is the current collection
efficiency of RRDE. N was determined to be 0.37.
For the Tafel plot, the kinetic current was calculated from the mass-transport
correction of RDE by:
I
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Fig. S1 (a) Raman spectra and (b) XPS survey spectrum of N-CN@MnO, hybrids, XPS spectra of (c)
C 1s, (d) N 1s and (e) Mn 2p of N-CN@MnO; hybrids, (f) XRD pattern of N-CN@MnO; hybrids.
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Fig. S2 XPS spectra of (a) C Is and (b) N 1s for N-CN@Mn;0,, (c) C 1s and (d) N 1Is for N-
CN@MnO.
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Fig. S3 Relative ratios of various nitrogen types in N-CN@MnO,, N-CN@Mn;04 and N-CN@MnO
hybrids.
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Fig. S4 Cycle voltammetry curves of (a) N-CNs, (b) N-CN@MnO,, (c) N-CN@Mn;0,4, (d) N-
CN@MnO hybrids and (e) Pt/C in N,- and O,-saturated 0.1 M KOH with a scan rate of 20 mV s™..
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Fig. S5 LSV curves of (a) N-CNs, (b) N-CN@MnO,, (c) N-CN@MnO hybrids and (d) Pt/C in O,-
saturated 0.1 M KOH with various rotating speeds.
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Fig. S6 (a) The differential plots of / versus £ constructed from the LSV curve. (b) K-L plots of N-

CN@Mn;0,4 at 0.3-0.5 V. (c) Peroxide yield (solid line) and the electron transfer number (dotted line)

of different catalysts at different potentials.
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Fig. S7 SEM images of N-CN@Mn;0, hybrids (a) before and (b) after long-term stability testing, (c)
XRD patterns of N-CN@Mn;04 before and after catalytic reaction.



Table S1 BET surface area and BJH pore size and volume of N-CN@MnO,, N-CN@Mn;0,4 and N-
CN@MnO hybrids.

Catalyst SSA (m2g!) TPV (cm?g') Pore size (nm)
N-CN@MnO, 244.1 0.5348 3.69
N-CN@Mn;04 293.5 0.7451 3.71
N-CN@MnO 216.8 0.4546 10.6

Table S2 Comparison of the electrochemical performances of N-CN@Mn;0, sample involved in

ORR with reported results.
Catalyst Eonset (V) I, (mA cm?) n Reference
Mn;04@GF_Os 0.82 -2.8 3.8 1
Mn;04/NCP 0.92 -5.24 391 2
graphene@Mn;04 0.89 -5.85 391 3
Mn;04/rGO - -4.37 3.81 4
Mn;04/MXene 0.89 -3.15 34 5
g
Ny @MWCNTSMn:O, 0.821 -4.47 3.80 6

N-CN@Mn;04 0.906 -5.85 393 this work
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