Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

N-doped carbon nanospheres with nanocavities to encapsulate manganese oxides toward ORR electrocatalysts

Minggui Wang,^{a,b} Fang Peng,^a Min Wang,^a Jie Han^{*b}

^a Guangling College, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China

^b School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,

Jiangsu 225002, P. R. China

List of supplementary material

SI-1 Details for electrochemical test.

Fig. S1 (a) Raman spectra and (b) XPS survey spectrum of N-CN@MnO₂ hybrids, XPS spectra of (c) C 1s, (d) N 1s and (e) Mn 2p of N-CN@MnO₂ hybrids, (f) XRD pattern of N-CN@MnO₂ hybrids.

Fig. S2 XPS spectra of (a) C 1s and (b) N 1s for N-CN@Mn₃O₄, (c) C 1s and (d) N 1s for N-CN@MnO.

Fig. S3 Relative ratios of various nitrogen types in N-CN@ MnO_2 , N-CN@ Mn_3O_4 and N-CN@MnO hybrids.

Fig. S4 Cycle voltammetry curves of (a) N-CNs, (b) N-CN@MnO₂, (c) N-CN@Mn₃O₄, (d) N-CN@MnO hybrids and (e) Pt/C in N₂- and O₂-saturated 0.1 M KOH with a scan rate of 20 mV s⁻¹.

Fig. S5 LSV curves of (a) N-CNs, (b) N-CN@MnO₂, (c) N-CN@MnO hybrids and (d) Pt/C in O₂-saturated 0.1 M KOH with various rotating speeds.

Fig. S6 (a) The differential plots of *I* versus *E* constructed from the LSV curve. (b) K-L plots of N-CN@ Mn_3O_4 at 0.3-0.5 V. (c) Peroxide yield (solid line) and the electron transfer number (dotted line) of different catalysts at different potentials.

Fig. S7 SEM images of N-CN@Mn₃O₄ hybrids (a) before and (b) after long-term stability testing, (c) XRD patterns of N-CN@Mn₃O₄ before and after catalytic reaction.

Table S1 BET surface area and BJH pore size and volume of N-CN@MnO₂, N-CN@Mn₃O₄ and N-CN@MnO hybrids.

Table S2 Comparison of the electrochemical performances of N-CN@ Mn_3O_4 sampleinvolved in ORR with reported results. References

Electrochemical test

Electrochemical measurements including cyclic voltammetry (CV), linear scan voltammogram (LSV) and stability were performed on an electrochemical workstation (VMP3, Biologic, France) equipped with a three-electrode cell system. A rotating ringdisk electrode (RRDE) of 5.61 mm in disk diameter loaded with electrocatalyst was used as the working electrode with Ag/AgCl electrode as the reference electrode, and Pt wire as the counter electrode. The oxygen reduction reaction was carried out in an O₂ saturated 0.1 M KOH aqueous solution. The stability test was collected at 0.8 V vs. Ag/AgCl with a rotation speed of 400 rpm.

The working electrode was prepared as follows: 10.0 mg of catalyst were dispersed in solvent mixture of 5 wt % Nafion solution (0.05 mL) and 2-propanol (0.95 mL) under sonication for 1 h to form a homogeneous ink. Then 7 μ L of the resulting suspension was dropped onto a pre-polished rotating disk electrode (RRDE, S_{disk} = 0.2475 cm²) and dried at room temperature. For comparison, commercial Pt/C-20% electrocatalyst (Sigma-Aldrich) was used.

The number of electrons transferred onto the as-prepared catalyst was calculated according to the Koutecky-Levich equation:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{\frac{1}{2}}} + \frac{1}{J_K}$$
(1)

Where *J* is the measured current, J_K is the kinetic current, ω is the electro rotating rate. B is determined from the slope of the Koutecky-Levich (K-L) plots according to the Levich equation as given below:

$$B = 0.62nFC_0(D_0)^{2/3}v^{-1/6}$$
(2)

where *n* represents the overall number of electrons transferred in oxygen reduction, *F* is the Faraday constant (96485 C mol⁻¹), C_0 is the bulk concentration of O₂ (1.2 × 10⁻⁶ mol cm⁻³), D_0 is the diffusion coefficient of O₂ in 0.1 mol L⁻¹ KOH electrolyte (1.9 × 10⁻⁵ cm² s⁻¹), *v* is the kinematic viscosity of the electrolyte (0.01 cm² s⁻¹).

The H₂O₂ yield and electron transfer number were calculated from the following

equation:

$$H_2O_2$$
 (%) =200 $I_r / (NI_d + I_r)$ (3)

$$n = 4I_{\rm d}/(I_{\rm d} + I_{\rm r}/N)$$
 (4)

where *I*d and *I*r are the disk and ring currents, respectively, and *N* is the current collection efficiency of RRDE. *N* was determined to be 0.37.

For the Tafel plot, the kinetic current was calculated from the mass-transport correction of RDE by:

$$J_K = \frac{J * J_L}{J_L - J} \tag{5}$$

Fig. S1 (a) Raman spectra and (b) XPS survey spectrum of N-CN@MnO₂ hybrids, XPS spectra of (c) C 1s, (d) N 1s and (e) Mn 2p of N-CN@MnO₂ hybrids, (f) XRD pattern of N-CN@MnO₂ hybrids.

Fig. S2 XPS spectra of (a) C 1s and (b) N 1s for N-CN@ Mn_3O_4 , (c) C 1s and (d) N 1s for N-CN@MnO.

Fig. S3 Relative ratios of various nitrogen types in N-CN@MnO₂, N-CN@Mn₃O₄ and N-CN@MnO hybrids.

Fig. S4 Cycle voltammetry curves of (a) N-CNs, (b) N-CN@MnO₂, (c) N-CN@Mn₃O₄, (d) N-CN@MnO hybrids and (e) Pt/C in N₂- and O₂-saturated 0.1 M KOH with a scan rate of 20 mV s⁻¹.

Fig. S5 LSV curves of (a) N-CNs, (b) N-CN@MnO₂, (c) N-CN@MnO hybrids and (d) Pt/C in O_2 -saturated 0.1 M KOH with various rotating speeds.

Fig. S6 (a) The differential plots of *I* versus *E* constructed from the LSV curve. (b) K-L plots of N-CN@ Mn_3O_4 at 0.3-0.5 V. (c) Peroxide yield (solid line) and the electron transfer number (dotted line) of different catalysts at different potentials.

Fig. S7 SEM images of N-CN@ Mn_3O_4 hybrids (a) before and (b) after long-term stability testing, (c) XRD patterns of N-CN@ Mn_3O_4 before and after catalytic reaction.

Catalyst	SSA (m ² g ⁻¹)	TPV (cm ³ g ⁻¹)	Pore size (nm)
N-CN@MnO2	244.1	0.5348	3.69
N-CN@Mn ₃ O ₄	293.5	0.7451	3.71
N-CN@MnO	216.8	0.4546	10.6

Table S1 BET surface area and BJH pore size and volume of N-CN@ MnO_2 , N-CN@ Mn_3O_4 and N-CN@MnO hybrids.

Table S2 Comparison of the electrochemical performances of N-CN $@Mn_3O_4$ sample involved in ORR with reported results.

Catalyst	$E_{\text{onset}}(\mathbf{V})$	$I_{\rm s}$ (mA cm ⁻²)	n	Reference
Mn ₃ O ₄ @GF_O ₃	0.82	-2.8	3.8	1
Mn ₃ O ₄ /NCP	0.92	-5.24	3.91	2
graphene@Mn ₃ O ₄	0.89	-5.85	3.91	3
Mn ₃ O ₄ /rGO	-	-4.37	3.81	4
Mn ₃ O ₄ /MXene	0.89	-3.15	3.4	5
g- C3N4@MWCNTs/Mn3O4	0.821	-4.47	3.80	6
N-CN@Mn ₃ O ₄	0.906	-5.85	3.93	this work

References

1. M. P. Araújo, M. Nunes, I. M. Rocha, M. F. R. Pereira and C. Freire, *J. Mater. Sci.*, 2019, **54**, 8919-8940.

2. T. Najam, X. K. Cai, M. K. Aslam, M. K. Tufail and S. S. A. Shah, Int. *J. Hydrogen Energ.*, 2020, **45**, 12903-12910.

3. T. Wang, Q J. Le, X. L. Guo, M. Huang, X. Y. Liu, F. Dong, J. T. Zhang and Y. X. Zhang, ACS Sustainable Chem. Eng., 2019, 7, 831-837.

4. Y. Zhang, X. F. Zhang, M. R. Liu, Y. Q. Liu, H. D. Huang and S. Lin, *J. Solid State Electrchem.*, 2018, **22**, 2159-2168.

5. Q. Xue, Z. X. Pei, Y. Huang, M. S. Zhu, Z. J. Tang, H. F. Li, Y. Huang, N. Li, H. Y. Zhang and C. Y. Zhi, *J. Mater. Chem. A*, 2017, **5**, 20818-20823.

6. G. H. Li, T. Sun, Y. Fu, L. X. Lei and O. Zhuo, J. Solid State Electrochem., 2016, 20, 2685-2692.