Appendix A. Supplementary material

Oxygen vacancies confined nickel cobaltite nanostructures as an excellent interface for enzyme-free electrochemical sensing of extracellular H₂O₂ secreted from live cells

Paramasivam Balasubramanian,^{a1} Shao-Bin He,^{a1} Arumugam Jansirani,^a Hao-Hua Deng,^a Hua-Ping Peng,^a Xing-Hua Xia,^b Wei Chen ^{a*}

^a Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian
Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou
350004, China

^b State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

¹ Shao-Bin He and Paramasivam Balasubramanian contributed equally to this work.

* Corresponding author. Tel./fax: +86 591 22862016.

E-mail address: chenandhu@163.com (W. Chen)

Fig. S1. Effect of O_V -NCO loading on GCE surface corresponding to cathodic peak current response of 1 mM H₂O₂.

Fig. S2. Amperometric current response of O_V -NCO/RDE at various operating potentials in 0.05 M PBS (pH 7) under consecutive injection of H_2O_2 (1 mM).