Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Lipase immobilization on UiO-66/poly(vinylidene fluoride) hybrid membranes and active catalysis in vegetable oil hydrolysis

Fenfen Zhu, Wei Xu, Xiao Li, Hao Meng, Yide Han, Junbiao Wu, Junli Xu, Yan Xu and Xia Zhang*

Faculty of Chemistry, Northeastern University, Shenyang 110819, China.

^{*}Corresponding authors.

X. Zhang (Prof.) E-mail: xzhang@mail.neu.edu.cn.

Tel: +86 24 83687671

membranes	m (UiO-66 particles, g)	m (PVDF, g)	m (PVP, g)	V (DMF, mL)
PVDF	0	7.0	1.0	43.30
U-1/PVDF	0.07	6.93	1.0	42.87
U-3/PVDF	0.21	6.79	1.0	42.00
U-10/PVDF	0.70	6.30	1.0	38.97
U-15/PVDF	1.05	5.95	1.0	36.81

Table S1 The detailed conditions for the synthesis of U-x/PVDF hybrid membranes

Fig. S1 (a) SEM image of UiO-66 particles and (b) corresponding size distribution.

Fig. S2 XRD patterns of pristine UiO-66, PVDF and U-*x*/PVDF hybrid membranes.

Fig. S3 (a) N_2 adsorption-desorption curves and (b) corresponding pore size distribution of UiO-66 particles.

Fig. S4 The surface water contact angle (CA) of PVDF (a) and U-*x*/PVDF (b-e): (b) U-1/PVDF; (c) U-3/PVDF; (d) U-10/PVDF; (e) U-15/PVDF.

Fig. S5 Non-linear fitting curves for the adsorption of lipase on PVDF and U-*x*/PVDF using intra-particle diffusion models.

Sample		PVDF	U-1/PVDF	U-3/PVDF	U-10/PVDF	U-15/PVDF	
pseudo- first order	$Q_e(\mu \text{g cm}^{-2})$	29.08	34.85	50.07	65.72	50.08	
	$k_1(\min^{-1})$	0.00997	0.01101	0.01414	0.02004	0.02114	
	R^2	0.98619	0.99191	0.99352	0.98882	0.98069	
	$Q_e(\mu \text{g cm}^{-2})$	37.45	43.23	59.41	73.23	55.62	
pseudo- second order	$k_2(\mathrm{cm}^2 \mathrm{\mu g}^{-1}$	2 52 10-4	2 71 . 10-4	2 88. 10-4	4 21 . 10-4	6.08×10 ⁻⁴	
	min ⁻¹)	2.53×10	2.71×10	2.88×10	4.31×10		
	R^2	0.97355	0.9949	0.99262	0.98717	0.99113	
Intra-	$k_d(\mu \text{g cm}^{-2}$	1 (410	2 0225	2.0472	4 1759	2 20/7	
particle	min ^{-1/2})	1.0419	2.0225	5.0475	4.1758	3.2067	
diffusion	R^2	0.93685	0.95934	0.90686	0.80021	0.81347	

Table S2 The simulating parameters of adsorption kinetics of the membranes

 using three kinetics models

Fig. S6 Adsorption kinetics of lipase on UiO-66, and Non-linear fitting curves for the adsorption of lipase on UiO-66 using pseudo-first order and pseudo-second order models.

Table S3 The simulating parameters of adsorption kinetics of lipase on UiO-66using pseudo-first order and pseudo-second order models

Kinetics	pseudo-first order			pseudo		
model						
parameters	$Q_e(\text{mg g}^{-1})$	$k_1(\min^{-1})$	R^2	$Q_e(\text{mg g}^{-1})$	$k_2(g mg^{-1} min^{-1})$	R^2
	199.01	0.01417	0.98617	221.63	1.00189×10 ⁻⁴	0.99628

Table S4 Simulating parameters of the adsorption isotherm of lipase on U-10/PVDF

 hybrid membranes using Langmuir and Freundlich models

Sample	Langmuir			Freundlich			
	q_m (µg cm ⁻²)	K_L (mL µg ⁻¹)	R^2	K_F (µg ^(1-1/n) mL ^{1/n} cm ⁻²)	n	R^2	
U-10/PVDF	75.31	0.014	0.967	8.651	3.017	0.88576	

Fig. S7 The absolute catalytic activities of immobilized and free lipase upon different conditions (a–c): (a) pH values in the range of 2.0–8.0; (b) Reaction temperature varied from 20 $^{\circ}$ C to 70 $^{\circ}$ C; (c) Thermostability comparison of free and membrane-immobilized lipase; (d) The cyclic catalytic activities of immobilized lipase.

Fig. S8 The cyclic adsorption of lipase on UiO-66.