Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Nitrogen Modified Titanium Dioxide (N-TiO₂) Promotes Carbon Monoxide Oxidation over Copper Catalysts

Guoqiang Cao, Nan Yi *

Department of Chemical Engineering, University of New Hampshire, Durham,

New Hampshire, 03824, United States

*corresponding author: nan.yi@unh.edu

1. Catalysts Preparation

Nitrogen modified TiO_2 (*N*- TiO_2) Typically titanium dioxide (P25, Sigma-Aldrich) and urea (Sigma-Aldrich) were physically mixed with mass ratio of TiO₂ and urea as 1:5. The mixture was placed in vacuum oven under room temperature overnight. The dried mixtures were calcined at 550 °C for 15 hours. Calcined samples were symbolized as *N*- TiO_2 .

Cu-N- TiO_2 Copper (II) acetate (Sigma-Aldrich) and N-TiO_2 supports were mixed with D.I. water and stirred for 5 minutes. 10 mL sodium hydroxide solution (1M) was added dropwise to the mixture. After 1 hour stirring at room temperature, the precipitate was separated through centrifuge, followed by D. I. water washing until the pH value of the washing solution reaches 7. The as-prepared samples were dried at 50 °C under vacuum. The copper weight was designed as 10 weight%. Dried samples were symbolized as Cu-N- TiO_2 .

Cu- TiO_2 The same procedure as Cu-N-TiO₂ was applied to synthesize Cu-TiO₂. TiO₂ (P25, Sigma-Aldrich) were calcined at 550 °C for 15 hours before introducing copper.

2. Characterization

BET Surface Area

The Brunauer-Emmet-Teller (BET) test was performed on Micromeritics AutoChem II 2920 equipped with a thermal conductivity detector. Prior to the test, samples were pre-treated with pure helium at 200 °C for 1.5 h. Isotherms of N₂ adsorption -desorption were measured based on acquisition of N₂ adsorption isotherm at 77K.

Raman Spectroscopy

Raman spectra was collected with a NT-MDT Raman spectrometer using diode laser beam. An excitation wavelength of 532 nm was used. Spectrum were collected by co-adding five scans of 10 s and the laser power of 22 ± 2 mW under ambient conditions.

In-Situ Diffuse Reflectance Fourier Transform Infrared Spectroscopy (In-Situ DRIFTS)

In-situ diffuse reflectance Fourier transform infrared spectroscopy (in-situ DRIFTS) experiments were performed using a Thermo Scientific Nicolet iS50 FT-IR spectrometer equipped with a MCT detector and a KBr beam splitter. Samples were first pretreated with pure helium at 200 °C for 1.5 hrs. A gas mixture (1%CO, 20%O₂ balanced in Helium) was introduced. The tested were conducted at 80 °C, 100 °C, 120 °C,

140 °C, 160 °C and 180 °C. All the background scans of the samples were collected under helium prior to the reaction.

Surface Copper Dispersion

Copper dispersion and the specific surface area of metallic copper of catalyst was measured by dissociative N_2O oxidation and H_2 titration. Typically, 25 mg catalysts were first pretreated in a helium flow at 200 °C for 1.5 h and cooled to room temperature to remove moisture and impurities that may remain on the surface. Then catalysts were reduced in a 10% H₂/Ar mixture at a flow rate of 30 mL·min⁻¹ from room temperature to 200 °C. The hydrogen consumption from this reduction process was assigned as A₁. Pure He (30 mL·min⁻¹) was purged into reactor to the samples to 50 °C. The catalyst was oxidized by 10% N₂O/He (30 mL·min⁻¹) at 60 °C for 0.5 h. Subsequently, pure He (30 mL·min⁻¹) flowed through the sample for 0.5 h to remove the residual N₂O. Finally, another reduction process was denoted as A₂. The dispersion of Cu (D, %) was calculated as follows:

$$D = \frac{2A_2}{A_1} \times 100\%$$

The specific surface area of metallic copper (S, $m^2 \cdot g^{-1}$) was calculated by

$$S = 2 \times A_2 \times N_A / (A_1 \times M_{Cu} \times 1.4 \times 10^{19}) = 1353 \times \frac{A_2}{A_1}$$

where N_A is Avogadro's constant, M_{Cu} is the relative atomic mass of copper (63.46 g/mol), and 1.4×10^{19} is the number of copper atom of per square meter when the average surface area of copper atom is assigned as 7.11×10^{-2} nm².

X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) was carried out on a Thermo Scientific K-Alpha system equipped with an Al source and a 180° double focusing hemispherical analyzer with a 128- channel detector at a pass energy of 50 eV for the analyses of the core level signals of Cu 2p, N 1s, Ti 2p and O 1s. When processing the XPS spectra data, binding energy values were referenced to C 1s peak (284.8 eV) to eliminate the effect of surface adventitious contamination layer to correct the shift caused by charge effect.

Temperature Programmed Reactions

Hydrogen-Temperature Programmed Reduction (H₂-TPR) was conducted on Micromeritics AutoChem II 2920 equipped with a thermal conductivity detector. In a typical H2-TPR experiment, 50 mg of sample were pretreated with pure helium at 200 $^{\circ}$ C for 1.5 h to remove moisture and impurities on the surface. The

reduction profiles were collected from room temperature to certain temperature with the heating rate as $5 \,^{\circ}C \cdot \min^{-1}$ while 10% H₂/Ar mixture (30 mL $\cdot \min^{-1}$) flowing through samples. The hydrogen consumption calculation was based on calibrations using Ag₂O standard sample under the same test conditions.

 O_2 -Temperature Programmed Reaction (O_2 -TPR) followed the same procedure as H_2 -TPR, except the carrier gas was 10% O_2 /Helium.

Catalytic Activity Test

The carbon monoxide oxidation reaction was performed in a home-made fixed bed flow reactor. Typically, 50 mg of catalyst was loaded in quartz tube (O.D. = 10 mm). The reactant gas (1% CO, 20%O₂ balanced with He) flows through the catalyst bed with the flow rate of 30 ml·min⁻¹. The samples were pre-treated with pure helium at 200 °C for 1.5 h before activity tests. The concentrations of carbon monoxide and carbon dioxide were analysed with a gas chromatograph (SRI 8160C).

Sample	Peak I		Peak II		Peak III		Peak IV	
	T(°C)	H ₂ Consumption μmol·gcatal ⁻¹ (%)	T(°C)	H ₂ Consumption μmol·gcatal ⁻¹ (%)	T(°C)	H ₂ Consumption μmol·gcatal ⁻¹ (%)	T(°C)	H ₂ Consumption µmol·gcatal ⁻¹ (%)
Cu-N-TiO ₂	76	186.0 (12.4%)	90	431.1 (28.8%)	115	735.4 (49.2)	132	142.1 (9.6%)
Cu-TiO ₂			93	270.2 (18.8%)	120	829.4 (57.8)	136	334.6 (23.4%)

Table S1. Analysis of Hydrogen-Temperature Programmed Reduction (H2-TPR) Profiles

Fig. S1 Raman spectra of supports and copper modified catalysts.

Fig. S2 XPS spectra of O1s and Ti 2p for TiO_2 catalyst.

Fig. S3 O₂-Temperature Programmed Reaction (O₂-TPR) profiles of N-TiO₂ and TiO₂ supports.

Fig. S4 XPS spectra of Cu 2p for Cu-TiO₂ and Cu-N-TiO₂ catalysts.