Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Synthesis, Photophysical and Electrochemical Properties of Novel and Highly

Fluorescent Difluoroboron Flavanone  $\beta$ -Diketonate Complexes

Elida Betania Ariza Paez<sup>a</sup>, Sergio Curcio<sup>b</sup>, Natália P. Neme<sup>bc</sup>, Matheus J.S. Matos<sup>b</sup>, Rodrigo S. Correa<sup>a</sup>, Fabio Junio Pereira<sup>a</sup>, Flaviane Francisco Hilário<sup>a</sup>, Thiago Cazati<sup>b</sup> and Jason Guy Taylor<sup>a</sup>

<sup>a</sup> Chemistry Department, ICEB, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto-MG, Brazil.

<sup>b</sup> Physics Department, ICEB, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto-MG, Brazil.

<sup>c</sup>University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands

\* e-mail address of the corresponding author: jason@iceb.ufop.br or jason@ufop.edu.br

### Synthesis of Compounds 4a-i



Scheme 1. Synthesis of Difluoroboron Flavanone β-Diketonate Complexes 4a-i

The FTIR (ATR), IR spectrum calculated with B3LYP functional, <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra of Compound **4a** in CDCl<sub>3</sub>



**Figure 1S**. Infrared spectra of compound **4a** (ATR) and IR spectrum with the main vibration normal modes for compound **4a** calculated with B3LYP functional.







The FTIR (ATR), <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra of Compound 4b in CDCl<sub>3</sub>

Figure 4S. Infrared spectra of compound 4b (ATR)





The FTIR (ATR), <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra of Compound 4c in CDCl<sub>3</sub>





Figure 8S. NMR 1H spectra of compound 4c (CDCl<sub>3</sub>, 400 MHz)



The FTIR (ATR), <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra of Compound 4d in CDCl<sub>3</sub>



Figure 10S. Infrared spectra of compound 4d (ATR)









18000 17000 16000 15000 14000 13000 B 0 Ò 12000 11000 10000  $R_1 =$ 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 0.99 1.03/ -1000 3.03 3.13 7.0 5.5 5.0 3.0 2.5 2.0 1.5 8.0 7.5 6.5 6.0 4.5 4.0 f1 (ppm) 3.5 1.0 0.5 Figure 14S. NMR <sup>1</sup>H spectra of compound 4e (CDCl<sub>3</sub>, 400 MHz)





Figure 15S. NMR <sup>13</sup>C spectra of compound 4e (CDCl<sub>3</sub>, 100 MHz)

The FTIR (ATR), <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra of Compound 4f in CDCl<sub>3</sub>



Figure 16S. Infrared spectra of compound 4f (ATR)



Figure 17S. NMR <sup>1</sup>H spectra of compound 4f (CDCl<sub>3</sub>, 400 MHz)







Figure 20S. NMR <sup>1</sup>H spectra of compound 4g (CDCl<sub>3</sub>, 400 MHz)



The FTIR (ATR), <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra of Compound 4h in CDCl<sub>3</sub>



Figure 22S. Infrared spectra of compound 4h (ATR)



Figure 24S. NMR <sup>13</sup>C spectra of compound 4h (CDCl<sub>3</sub>, 100 MHz)

The FTIR (ATR), <sup>1</sup>H NMR (400 MHz) and <sup>13</sup>C NMR (100 MHz) spectra of Compound 4i in CDCl<sub>3</sub>



**Figure 25S**. Infrared spectra of compound **4i** (ATR)





# Crystallographic Data and Refinement for compound 4e

| Table 1S. Crystallographic data and refinement | nt structure of compound 4e           |
|------------------------------------------------|---------------------------------------|
| Empirical formula                              | $C_{20}H_{13}BF_2O_3S$                |
| Formula weight                                 | 382.17                                |
| Temperature                                    | 298(2) K                              |
| Wavelength                                     | 1.54184 Å                             |
| Crystal system                                 | Monoclinic                            |
| Space group                                    | P21/c                                 |
| Unit cell dimensions                           | a = 10.1117(5) Å                      |
|                                                | b = 18.9112(6) Å; ⊚= 117.599(6)°.     |
|                                                | c = 10.1323(5) Å                      |
| Volume                                         | 1717.07(16) ų                         |
| Z                                              | 4                                     |
| Density (calculated)                           | $1.478 \text{ Mg/m}^{3}$              |
| Absorption coefficient                         | 2.033 mm <sup>-1</sup>                |
| F(000)                                         | 784                                   |
| Crystal size                                   | $0.23 \ge 0.11 \ge 0.10 \text{ mm}^3$ |
| Theta range for data collection                | 4.677 to 87.018°.                     |
| Index ranges                                   | -12≤h≤13, -23≤k≤22, -13≤l≤12          |
| Reflections collected                          | 22177                                 |
| Independent reflections                        | 3526 [R(int) = 0.1595]                |
| Completeness to theta = 67.684°                | 99.9 %                                |
| Data / restraints / parameters                 | 3526 / 0 / 302                        |
| Goodness-of-fit on F <sup>2</sup>              | 1.095                                 |
| Final R indices [I>2sigma(I)]                  | R1 = 0.0689, wR2 = 0.1871             |
| R indices (all data)                           | R1 = 0.0868, wR2 = 0.2190             |
| Extinction coefficient                         | 0.0017(4)                             |
| Largest diff. peak and hole                    | 0.250 and -0.329 e.Å <sup>-3</sup>    |
|                                                |                                       |

# **Table 2S.** Selected lengths (Å) and connection angles (°) for compound 4e

| Bond        | Lenght (Å) | Bond             | Angle (°) |
|-------------|------------|------------------|-----------|
| O(2)-C(3)   | 1.307(3)   | C(3)-O(2)-B(1)   | 120.6(3)  |
| O(1)-C(1)   | 1.316(3)   | C(1)-O(1)-B(1)   | 122.2(2)  |
| O(2)-B(1)   | 1.476(5)   | F(1)-B(1)-F(2)   | 112.1(3)  |
| O(1)-B(1)   | 1.458(5)   | F(1)-B(1)-O(1)   | 109.0(3)  |
| F(2)-B(1)   | 1.371(5)   | F(2)-B(1)-O(1)   | 108.3(4)  |
| F(1)-B(1)   | 1.361(4)   | F(1)-B(1)-O(2)   | 108.4(4)  |
| C(3)-C(2)   | 1.380(4)   | F(2)-B(1)-O(2)   | 109.4(3)  |
| C(3)-C(4)   | 1.439(4)   | O(1)-B(1)-O(2)   | 109.7(2)  |
| C(2)-C(1)   | 1.402(4)   | O(2)-C(3)-C(2)   | 122.1(3)  |
| C(2)-C(14)  | 1.513(3)   | O(2)-C(3)-C(4)   | 115.3(3)  |
| C(14)-C(15) | 1.518(3)   | C(2)-C(3)-C(4)   | 122.6(2)  |
| C(10)-S(1)  | 1.598(10)  | C(3)-C(2)-C(1)   | 118.4(2)  |
| C(10)-C(11) | 1.635(12)  | C(3)-C(2)-C(14)  | 119.4(2)  |
| C(12)-C(11) | 1.572(16)  | C(10)-S(1)-C(13) | 95.5(8)   |
| C(4)-C(9)   | 1.317(8)   | C(4)-C(9)-O(3)   | 129.0(6)  |
|             |            |                  |           |



Figure 28S. X-ray structure showing molecule 4e conformation.





**Figure 29S**: Absorption spectra of the compounds in chloroform solution with concentration ranging from  $5 \times 10^{-5}$  to  $1 \times 10^{-4}$  M. Inset shows the maximum absorption intensities with concentration of the compound whereas the molar absorption coefficients ( $\epsilon$ ) of the compounds were evaluated from slopes of the curves using the Beer-Lambert law.







**Figure 30S**: Absorption spectra of the compounds in acetonitrile solution with concentration ranging from  $5_{\times}10^{-5}$  to  $1_{\times}10^{-4}$  M. Inset shows the maximum absorption intensities with concentration of the compound whereas the molar absorption coefficients ( $\epsilon$ ) of the compounds were evaluated from slopes of the curves using the Beer-Lambert law.





**Figure 31S**: Absorption spectra of the compounds in tetrahydrofuran solution with concentration ranging from  $5 \times 10^{-5}$  to  $1 \times 10^{-4}$  M. Inset shows the maximum absorption intensities with concentration of the compound whereas the molar absorption coefficients ( $\epsilon$ ) of the compounds were evaluated from slopes of the curves using the Beer-Lambert law.

## **Fluorescence Decay Curves**



Figure 32S: The fluorescence decay curves of the compounds in chloroform solution



Figure 33S: The fluorescence decay curves of the compounds in acetonitrile solution



**Figure 34S**: The fluorescence decay curves of the compounds in tetrahydrofuran solution

Electrochemical properties of compounds: Cyclic voltammograms of the compounds 4a-i



Figure 35S. Cyclic voltammograms of compound 4a



Figure 36S. Cyclic voltammograms of compound 4b



Figure 37S. Cyclic voltammograms of compound 4c



Figure 38S. Cyclic voltammograms of compound 4d



Figure 39S. Cyclic voltammograms of compound 4e



Figure 40S. Cyclic voltammograms of compound 4f



Figure 41S. Cyclic voltammograms of compound 4g



Figure 42S. Cyclic voltammograms of compound 4h



Figure 43S. Cyclic voltammograms of compound 4i



### Computational Studies for compounds 4a and 4e

**Figure 44S.** Theoretical absorption spectra for 10 excited states for molecule 4a compared for all exchange-correlation functionals studied for gas phase (top) and acetonitrile (down).



**Figure 45S.** Theoretical absorption spectra for 10 excited states for molecule 4e compared for all exchange-correlation functionals studied for gas phase (top) and acetonitrile (down).



Figure 46S. Optimized geometry for molecule 4a. Labels identify the atoms for the Table 3S.

**Table 3S.** Optimized Bond distances (Å) and angles (degrees) selecting to molecule **4a.** Calculations were performed with DFT and B3LYP functional. Figure 44S shows the atom labels definition.

| Bond      | Distance (Å) | Bond     | Angle (º) | Bond        | Angle (º) |
|-----------|--------------|----------|-----------|-------------|-----------|
| <br>B4-F2 | 1.3764       | B4-O0-C5 | 121.15    | C21-C22-H23 | 120.23    |
| B4-O1     | 1.5083       | B4-O1-C7 | 122.84    | H23-C22-C24 | 119.29    |
| B4-F3     | 1.3606       | O1-B4-F2 | 108.48    | C21-C22-C24 | 120.47    |
| B4-O0     | 1.5116       | O0-B4-F2 | 108.33    | H25-C24-C26 | 120.22    |
| C5-O0     | 1.2883       | O1-B4-F3 | 109.00    | C22-C24-C26 | 120.24    |
| C6-C5     | 1.4085       | F2-B4-F3 | 114.49    | C22-C24-H25 | 119.54    |
| C7-O1     | 1.2953       | O0-B4-O1 | 107.32    | H27-C26-C28 | 120.12    |
| C7-C6     | 1.3995       | O0-B4-F3 | 108.99    | C24-C26-C28 | 119.68    |

| C8-C7   | 1.4801 | O0-C5-C11       | 117.55 | C24-C26-H27 | 120.20 |
|---------|--------|-----------------|--------|-------------|--------|
| H10-C9  | 1.0829 | C6-C5-C11       | 119.36 | H29-C28-C30 | 119.87 |
| C11-C5  | 1.4494 | O0-C5-C6        | 122.93 | C26-C28-C30 | 120.03 |
| C12-C11 | 1.4035 | C5-C6-C19       | 117.28 | C26-C28-H29 | 120.09 |
| H13-C12 | 1.0814 | C5-C6-C7        | 117.36 | C28-C30-H31 | 119.83 |
| C14-C12 | 1.3805 | C7-C6-C19       | 125.06 | C21-C30-H31 | 119.45 |
| H15-C14 | 1.0819 | 01-C7-C8        | 113.76 | C21-C30-C28 | 120.72 |
| C16-C14 | 1.3991 | C6-C7-C8        | 125.47 | O34-C32-C35 | 118.13 |
| H17-C16 | 1.0833 | 01-C7-C6        | 120.66 | C11-C32-C35 | 120.13 |
| C18-C9  | 1.3923 | C33-C8-C37      | 119.09 | C11-C32-O34 | 121.65 |
| C19-C6  | 1.5088 | C7-C8-C37       | 117.97 | C39-C33-H42 | 119.15 |
| H20-C19 | 1.0881 | C7-C8-C33       | 122.89 | C8-C33-H42  | 120.54 |
| C21-C19 | 1.5260 | H10-C9-C18      | 120.13 | C8-C33-C39  | 120.24 |
| C22-C21 | 1.3928 | C18-C9-C37      | 120.18 | C19-O34-C32 | 117.31 |
| H23-C22 | 1.0823 | H10-C9-C37      | 119.69 | C32-C35-H36 | 118.97 |
| C24-C22 | 1.3931 | C12-C11-<br>C32 | 119.44 | C16-C35-H36 | 121.61 |
| H25-C24 | 1.0826 | C5-C11-C32      | 118.08 | C16-C35-C32 | 119.43 |
| C26-C24 | 1.3880 | C5-C11-C12      | 122.26 | C9-C37-H38  | 120.42 |
| H27-C26 | 1.0830 | C11-C12-<br>C14 | 120.35 | C8-C37-H38  | 119.21 |
| C28-C26 | 1.3930 | C11-C12-<br>H13 | 118.49 | C8-C37-C9   | 120.38 |
| H29-C28 | 1.0830 | H13-C12-<br>C14 | 121.16 | C33-C39-H40 | 119.54 |
| C30-C28 | 1.3869 | H15-C14-<br>C16 | 120.19 | C18-C39-H40 | 120.20 |

| C30-C21 | 1.3986 | C12-C14-<br>C16 | 119.56 | C18-C39-C33 | 120.26 |
|---------|--------|-----------------|--------|-------------|--------|
| H31-C30 | 1.0837 | C12-C14-<br>H15 | 120.25 |             |        |
| C32-C11 | 1.4055 | C14-C16-<br>C35 | 121.07 |             |        |
| C33-C8  | 1.3986 | C14-C16-<br>H17 | 119.70 |             |        |
| O34-C32 | 1.3509 | H17-C16-<br>C35 | 119.23 |             |        |
| O34-C19 | 1.4561 | C9-C18-H41      | 120.10 |             |        |
| C35-C32 | 1.3938 | C9-C18-C39      | 119.82 |             |        |
| C35-C16 | 1.3850 | C39-C18-<br>H41 | 120.08 |             |        |
| H36-C35 | 1.0818 | H20-C19-<br>C21 | 108.57 |             |        |
| C37-C9  | 1.3858 | C6-C19-C21      | 115.67 |             |        |
| C37-C8  | 1.4013 | C6-C19-H20      | 109.54 |             |        |
| H38-C37 | 1.0814 | C21-C19-<br>O34 | 108.53 |             |        |
| C39-C33 | 1.3897 | H20-C19-<br>O34 | 102.36 |             |        |
| C39-C18 | 1.3895 | C6-C19-O34      | 111.31 |             |        |
| H40-C39 | 1.0829 | C19-C21-<br>C22 | 123.10 |             |        |
| H41-C18 | 1.0830 | C22-C21-<br>C30 | 118.86 |             |        |
| H42-C33 | 1.0812 | C19-C21-<br>C30 | 118.05 |             |        |

| Bond        | Distance<br>(Å) | Bond             | Angle (°) |
|-------------|-----------------|------------------|-----------|
| O(2)-C(3)   | 1.2895          | C(3)-O(2)-B(1)   | 120.8167  |
| O(1)-C(1)   | 1.3002          | C(1)-O(1)-B(1)   | 123.2185  |
| O(2)-B(1)   | 1.5085          | F(1)-B(1)-F(2)   | 114.2471  |
| O(1)-B(1)   | 1.5036          | F(1)-B(1)-O(1)   | 109.0227  |
| F(2)-B(1)   | 1.3784          | F(2)-B(1)-O(1)   | 108612    |
| F(1)-B(1)   | 1.3613          | F(1)-B(1)-O(2)   | 109.1807  |
| C(3)-C(2)   | 1.4078          | F(2)-B(1)-O(2)   | 108.2181  |
| C(3)-C(4)   | 1.4498          | O(1)-B(1)-O(2)   | 107.2642  |
| C(2)-C(1)   | 1404            | O(2)-C(3)-C(2)   | 123.2112  |
| C(2)-C(14)  | 1.5092          | O(2)-C(3)-C(4)   | 117.1626  |
| C(14)-C(15) | 1.5254          | C(2)-C(3)-C(4)   | 119.5437  |
| C(10)-S(1)  | 1.7394          | C(3)-C(2)-C(1)   | 117.5049  |
| C(10)-C(11) | 1.3828          | C(3)-C(2)-C(14)  | 117.1401  |
| C(12)-C(11) | 1.4072          | C(10)-S(1)-C(13) | 92.1963   |
| C(4)-C(9)   | 1.4041          | C(4)-C(9)-O(3)   | 121.5088  |
| C(4)-C(5)   | 1.4033          | C(4)-C(9)-C(8)   | 120.2512  |

**Table 4S.** Optimized Bond distances (Å) and angles (degrees) selecting to molecule **4e.** Calculations were performed with DFT and B3LYP functional. Figure 1 shows the atom labels definition.

**Table 5S.** Excitations energies (in eV and nm), Oscillator Strength (fosc), and main orbitals electronic transition calculated with full TDDFT with B3LYP/def2-TZVP for molecule **4a**. In the transitions the orbitals 96 and 97 are the HOMO and LUMO, respectively.

| State | Transition<br>(≥10%)                                           | E / eV      | λ / nm | fosc        |  |
|-------|----------------------------------------------------------------|-------------|--------|-------------|--|
| 1     | 96 → 97<br>(95%)                                               | 3.210 386.3 |        | 0.170809152 |  |
| 2     | 95 → 97<br>(93%)                                               | 3.693       | 335.7  | 0.273949741 |  |
| 3     | $\begin{array}{c} 94 \rightarrow 97 \\ (98\%) \end{array}$     | 3.900       | 317.9  | 0.019052243 |  |
| 4     | 93 → 97<br>(95%)                                               | 3.914       | 316.8  | 0.117756096 |  |
| 6     | 91→ 97<br>(88%)                                                | 4.324       | 286.7  | 0.027901013 |  |
| 7     | 90 → 97<br>(88%)                                               | 4.558       | 272    | 0.033283194 |  |
| 9     | 96 → 98<br>(86%)                                               | 4.748       | 261.1  | 0.028003944 |  |
| 10    | 96 → 100<br>(80%)                                              | 5.073       | 244.4  | 0.013384248 |  |
| 12    | 95 → 98<br>(72%)                                               | 5.181       | 239.3  | 0.026443151 |  |
| 14    | $96 \rightarrow 101$<br>(68%)<br>$96 \rightarrow 102$<br>(10%) | 5.333       | 232.5  | 0.022971295 |  |
| 15    | $88 \to 97$ (13%)<br>94 \to 98<br>(28%)<br>96 \to 102<br>(23%) | 5.448       | 227.6  | 0.049643849 |  |
| 17    | 88 → 97<br>(72%)                                               | 5.483       | 226.1  | 0.01321619  |  |
| 19    | 93 → 98<br>(34%)                                               | 5.590       | 221.8  | 0.036506356 |  |

|    | 94 → 98<br>(28%)                                                                                                                                               |       |       |             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------------|
| 22 | $87 \to 97$<br>(36%)<br>$95 \to 101$<br>(34%)                                                                                                                  | 5.822 | 213   | 0.016565902 |
| 23 | $87 \rightarrow 97$<br>(13%)<br>$91 \rightarrow 98$<br>(34%)<br>$95 \rightarrow 101$<br>(13%)                                                                  | 5.859 | 211.6 | 0.038940285 |
| 24 | $87 \rightarrow 97$<br>(14%)<br>$91 \rightarrow 98$<br>(14%)<br>$93 \rightarrow 100$<br>(13%)<br>$94 \rightarrow 99$<br>(12%)                                  | 5.911 | 209.8 | 0.076544986 |
| 26 | $86 \rightarrow 97$<br>(11%)<br>$87 \rightarrow 97$<br>(12%)<br>$94 \rightarrow 99$<br>(22%)<br>$95 \rightarrow 102$<br>(16%)<br>$96 \rightarrow 103$<br>(16%) | 5.945 | 208.5 | 0.033539019 |
| 28 | $86 \rightarrow 97$ (11%)<br>$93 \rightarrow 99$ (10%)<br>$93 \rightarrow 100$ (13%)<br>$94 \rightarrow 99$ (19%)<br>$94 \rightarrow 101$ (15%)                | 6.015 | 206.1 | 0.034965853 |
| 29 | $92 \rightarrow 100$ (18%) $93 \rightarrow 99$                                                                                                                 | 6.03  | 205.6 | 0.012450534 |

|    | (18%)                                                                                        |       |       |             |
|----|----------------------------------------------------------------------------------------------|-------|-------|-------------|
| 30 | $82 \rightarrow 97$<br>(15%)<br>$86 \rightarrow 97$<br>(31%)<br>$90 \rightarrow 98$<br>(10%) | 6.043 | 205.2 | 0.022034954 |

**Table 6S.** Excitations energies (in eV and nm), Oscillator Strength (fosc ), and main orbitals electronic transition calculated with full TDDFT with B3LYP/def2-TZVP for molecule **4e**. In the transitions the orbitals 97 and 98 are the HOMO and LUMO, respectively.

| State | Transition<br>(≥10%)                                                                    | E/eV λ/nm |       | fosc        |
|-------|-----------------------------------------------------------------------------------------|-----------|-------|-------------|
| 1     | 97 → 98 (93%)                                                                           | 3.066     | 404.4 | 0.224529310 |
| 2     | 96 → 98 (87%)                                                                           | 3.524     | 351.8 | 0.291237391 |
| 3     | 95 → 98 (86%)                                                                           | 3.671     | 337.7 | 0.105519184 |
| 4     | 94 → 98 (96%)                                                                           | 3.714     | 333.8 | 0.013623090 |
| 6     | 93 → 98 (20%)<br>92 → 98 (69%)                                                          | 4.200     | 295.2 | 0.041282564 |
| 7     | 91 → 98 (45%)<br>97 → 99 (47%)                                                          | 4.424     | 280.3 | 0.039450197 |
| 8     | 91 → 98 (50%)<br>97 → 99 (38%)                                                          | 4.453     | 278.4 | 0.016901852 |
| 10    | 96 → 99 (85%)                                                                           | 4.870     | 254.6 | 0.024583897 |
| 12    | $94 \rightarrow 99 (45\%)$<br>$95 \rightarrow 99 (29\%)$<br>$97 \rightarrow 100 (13\%)$ | 5.096     | 243.3 | 0.020891773 |
| 13    | $94 \rightarrow 99 (18\%)$<br>$95 \rightarrow 99 (62\%)$<br>$97 \rightarrow 100 (10\%)$ | 5.131     | 241.6 | 0.023999761 |
| 14    | 97 → 101 (82%)                                                                          | 5.281     | 234.8 | 0.018171715 |
| 18    | $93 \rightarrow 99 (46\%)$<br>$93 \rightarrow 99 (37\%)$                                | 5.539     | 223.8 | 0.093964106 |

| 19 | $92 \rightarrow 99 (49\%)$<br>$93 \rightarrow 99 (13\%)$<br>$96 \rightarrow 100 (20\%)$                                 | 5.572 | 222.5 | 0.046046646 |
|----|-------------------------------------------------------------------------------------------------------------------------|-------|-------|-------------|
| 20 | $91 \rightarrow 99 (13\%)$<br>$92 \rightarrow 99 (16\%)$<br>$96 \rightarrow 100 (19\%)$<br>$97 \rightarrow 102 (16\%)$  | 5.656 | 219.2 | 0.016147459 |
| 22 | $91 \rightarrow 99 (20\%)$<br>$92 \rightarrow 99 (10\%)$<br>$96 \rightarrow 101 (20\%)$<br>$97 \rightarrow 103 (24\%)$  | 5.770 | 214.9 | 0.012774448 |
| 23 | $91 \rightarrow 99 (21\%)$<br>$96 \rightarrow 101 (12\%)$<br>$97 \rightarrow 103 (26\%)$<br>$97 \rightarrow 104 (16\%)$ | 5.819 | 213.1 | 0.026391595 |
| 24 | $91 \rightarrow 99 (23\%)$<br>$96 \rightarrow 101 (26\%)$<br>$96 \rightarrow 102 (20\%)$                                | 5.855 | 211.8 | 0.039512209 |
| 25 | 87 → 98 (58%)<br>97 → 104 (14%)                                                                                         | 5.887 | 210.6 | 0.022891242 |
| 26 | $94 \rightarrow 101 (15\%)$<br>$95 \rightarrow 100 (63\%)$                                                              | 5.915 | 209.6 | 0.035918586 |
| 27 | $97 \rightarrow 103 (20\%)$<br>$97 \rightarrow 104 (33\%)$                                                              | 5.948 | 208.4 | 0.082427580 |
| 28 | 96 → 102 (44%)                                                                                                          | 5.965 | 207.9 | 0.105858928 |
| 29 | $86 \rightarrow 98 (50\%)$<br>$87 \rightarrow 98 (16\%)$                                                                | 5.986 | 207.1 | 0.017980533 |
| 30 | $95 \rightarrow 101 (25\%)$<br>$95 \rightarrow 102 (45\%)$                                                              | 6.113 | 202.8 | 0.019074172 |

 Table 7S. Main excited states for molecules 4a and 4e and their respective oscillator strength values (fosc) for different solvents calculated with B3LYP functional.

|             | State 1 | $f_{ m osc}$ | State 2 | $f_{ m osc}$ | State 3 | $f_{ m osc}$ | State 4 | $\mathbf{f}_{\mathrm{osc}}$ |
|-------------|---------|--------------|---------|--------------|---------|--------------|---------|-----------------------------|
| Compound 4a |         |              |         |              |         |              |         |                             |
| gas phase   | 386.3   | 0.171        | 335.7   | 0.274        | 317.9   | 0.019        | 316.8   | 0.118                       |

| CH₃CN              | 433.6 | 0.139 | 387.3 | 0.174 | 420.0 | 0.002 | 346.0 | 0.253 |
|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| CHCl <sub>3</sub>  | 432.3 | 0.142 | 379.8 | 0.198 | 427.0 | 0.002 | 346.3 | 0.220 |
| THF                | 432.6 | 0.141 | 382.5 | 0.189 | 424.0 | 0.002 | 345.9 | 0.233 |
| Compound <b>4e</b> |       |       |       |       |       |       |       |       |
| gas phase          | 404.4 | 0.225 | 351.8 | 0.291 | 337.7 | 0.106 | 333.8 | 0.014 |
| CH₃CN              | 451.3 | 0.203 | 391.7 | 0.232 | 367.0 | 0.194 | 423.5 | 0.014 |
| CHCl <sub>3</sub>  | 442.6 | 0.210 | 378.4 | 0.262 | 369.8 | 0.131 | 427.6 | 0.016 |
| THF                | 451.5 | 0.236 | 388.4 | 0.281 | 367.3 | 0.193 | 432.2 | 0.016 |