Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Synthesis, X-ray structure, antiproliferative activity, interaction with HSA and docking studies of three novels of mono and binuclear copper complexes containing maltol ligand

Malihe Zahmati Eraj¹, Lars Eriksson², Mona Alibolandi³, Maryam Babaei³, Amir Sh. Saljooghi^{1*}, Mohammad Ramezani^{3*}

¹Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.

²Department of Materials and Environmental Chemistry, Stockholm University, SE10691 Stockholm, Sweden.

³Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.

Supplementary data:

*Corresponding Author: Amir. Sh. Saljooghi, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436, Mashhad, Iran, Email: <u>saljooghi@um.ac.ir</u>

*Corresponding Author: Mohammad Ramezani, Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran, Email: RamezaniM@mums.ac.ir

Table S1

Crystallographic data of the complexes (1), (2), and (3).

Compound	(1)	(2)	(3)
CCDC-number	1956605	1956606	1956607
Empirical formula	C ₁₆ H ₁₃ Br ₂ Cu N ₂ O ₄ , N O ₃	C ₁₆ H ₂₆ Cu N ₂ O ₃ , F ₆ P	C ₃₆ H ₂₆ Cu ₂ N ₄ O ₆ , 2(F ₆ P)
M (g mol ⁻¹)	582.65	489.79	1027.65
Т (К)	293	293	293
Radiation	ΜοΚα	ΜοΚα	ΜοΚα
λ(Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P 2 ₁ /c	P 2 ₁ /c	P -1
a (Å)	11.1803(2)	8.0772(2)	8.153(2)
b (Å)	11.3573(2)	14.8170(3)	11.328(3)
с (Å)	15.1698(3)	15.2106(3)	22.236(7)
α()	90	90	93.697(7)
β()	94.906(2)	101.928(2)	92.344(7)
γ()	90	90	107.709(7)
V (Å ³)	1919.17(6)	1781.10(7)	1948.3(10)
Z	4	4	2
D _{calc} (g/cm ³)	2.016	1.827	1.752
μ (mm ⁻¹)	5.348	1.399	1.283
F (000)	1140	980	1028
Crystal size (mm ³)	0.25 · 0.15 · 0.10	0.16 · 0.14 · 0.10	0.13 · 0.03 · 0.02
θ range for data collection()	3.24 - 26.37	3.35 – 26.37	2.53 – 25.68
Index ranges	-13 ≤ h ≤ 13	-10 ≤ h ≤ 10	-9 ≤ h ≤ 9
	$-14 \le k \le 14$	-18 ≤ k ≤ 18	-13 ≤ k ≤ 13
	-18 ≤ I ≤ 18	-19≤ ≤19	-27 ≤ I ≤ 27
Reflections collected	43533	27438	60653
Independent reflections, R _{int}	3918, 0.0446	3637, 0.0269	7395 , 0.2219
Data/restraints/parameter s	3918 / 3 / 271	3637 / 0 / 264	7395 / 0 / 561

Goodness-of-fit on F ²	1.104	1.051	1.179
Final R indexes [1≥2σ (1)]	0.0480	0.0485	0.1266
Final R indexes [all data]	0.1254	0.1399	0.2786
Largest difference,	1.085	0.894	0.738
peak/hole (eÅ ⁻³)	-0.928	-0.730	-0.705

Table S2

Selected bond lengths (A^e) and angles (^e) of the complexes.

(1)		(2)		(3)	
Cu(1)-O(9)	1.906(4)	Cu(1)-O(8)	1.927(2)	Cu(1)-N(1)	1.99(1)
Cu(1)-O(10)	1.963(4)	Cu(1)-O(9)	1.962(2)	Cu(1)-N(2)	1.968(8)
Cu(1)-O(11)	2.292(5)	Cu(1)-N(10)	1.985(2)	Cu(1)-O(20)	1.910(8)
Cu(1)-N(16)	1.984(4)	Cu(1)-N(21)	1.972(3)	Cu(1)-O(21)	1.928(8)
Cu(1)-N(27)	1.984(3)	Cu(1)-O(8´)	2.472(4)	Cu(1)-O(20′)	2.554
				Cu(2)-N(22)	1.97(9)
				Cu(2)-N(33)	1.97(7)
				Cu(2)-O(43)	1.92(6)
				Cu(2)-O(44)	1.93(1)
				Cu(2)-O(43′)	2.51(4)
O(9)-Cu(1)-O(10)	85.5(2)	O(8)-Cu(1)-O(9)	85.3(1)	N(1)-Cu(1)-N(2)	83.5(3)
O(9)-Cu(1)-O(11)	99.0(2)	O(8)-Cu(1)-N(10)	94.5(1)	N(1)-Cu(1)-O(20)	178.2(4)
O(9)-Cu(1)-N(16)	161.9(2)	O(8)-Cu(1)-N(21)	176.2(1)	N(1)-Cu(1)-O(21)	95.4(4)
O(9)-Cu(1)-N(27)	96.3(2)	O(8)-Cu(1)-O(8)	89.72	N(1)-Cu(1)-O(20')	89.2
O(10)-Cu(1)-O(11)	99.7(2)	O(9)-Cu(1)-N(10)	164.8(1)	N(2)-Cu(1)-O(20)	94.7(3)
O(10)-Cu(1)-N(16)	94.0(2)	O(9)-Cu(1)-N(21)	97.5(1)	N(2)-Cu(1)-O(21)	167.8(4)
O(10)-Cu(1)-N(27)	170.2(2)	O(9)-Cu(1)-O(8′)	100.32	N(2)-Cu(1)-O(20')	87.6
O(11)-Cu(1)-N(16)	98.9(2)	N(10)-Cu(1)-N(21)	82.1(1)	O(20)-Cu(1)-O(21)	86.3(3)
O(11)-Cu(1)-N(27)	89.5(2)	N(10)-Cu(1)-O(8´)	94.90	O(20)-Cu(1)-O(20)	91.0

N(16)-Cu(1)-N(27)	81.3(2)	N(21)-Cu(1)-O(8´)	92.28	O(21)-Cu(1)-O(20')	104.6
				N(22)-Cu(2)-N(33)	86.3(6)
Symmetry codes:				N(22)-Cu(2)-O(43)	177.6(2)
O(8´): 2-x, 1-y, 1-z				N(22)-Cu(2)-O(44)	95.4(7)
O(20´): -x, -y, 1-z				N(22)-Cu(2)-O(43')	90.4(1)
O(43′): 2-x, 1-y, 1-z				N(33)-Cu(2)-O(43)	94.3(8)
				N(33)-Cu(2)-O(44)	167.3(3)
				N(33)-Cu(2)-O(43')	88.1(7)
				O(43)-Cu(2)-O(44)	86.5(8)
				O(43)-Cu(2)-O(43)	90.2(4)
				O(44)-Cu(2)-O(43′)	104.4(6)

 $[Cu(mal)(4,4 \text{ dibromo-bpy})(H_2O)]^+ (1), [Cu(mal)(bpy)]_2^{+3} (2), [Cu (mal) (1,10 \text{ phen})]_2^{+3} (3) \text{ and } . [Cu(bpy)(mal)(NO_3)] (4)$

Table S3

The selected hydrogen bond interactions. Selected bond lengths [Å] and angles [°]

Complex	D-H···A	D-H	H…A	D…A	D-H···A
(1)	011-H11A…015	0.77	2.11	2.85	164.20
	011-H11B…014	0.77	2.16	2.90	161.08
	011-H11B…015	0.77	2.67	3.32	143.22
	C20-H20…O13	0.93	2.42	3.34	176.73
	C23-H23…O13	0.93	2.59	3.51	170.66
	C7-H7…Br1	0.93	2.92	3.70	141.89
		·	·		·
(2)	C7-H7A…F5	0.96	2.57	3.38	142.52
	C11-H11…F4	0.93	2.41	3.18	140.13
	C12-H12…F6	0.93	2.62	3.49	154.92
	C14-H14…F1	0.93	2.63	3.01	105.09
	C19-H19…F3	0.93	2.62	3.15	117.29
	C20-H20…F5	0.93	2.64	3.52	159.17
		·	·		·
(3)	C1-H1…F26	0.93	2.45	3.19	118.05
	C3-H3…F23	0.93	2.63	3.29	128.51
	C9-H9…F21	0.93	2.55	3.34	142.70
	C10-H10…F25	0.93	2.36	3.23	156.33
	C19-H19A…F25	0.96	2.55	3.39	146.85
	C27-H27…F24	0.93	2.44	3.31	157.14
	C42-H42C…F24	0.96	2.51	3.45	165.97

κ_{sv} and k_a values for the binding of HSA to the Cu(II) complexes and maltol at three different temperatures.					
Compound	Т(К)	K _{SV} (×10 ⁵ M ⁻¹)	K _q (×10 ¹² M ⁻¹ s ⁻¹)	R ²	
	290	8.84	8.84	0.96	
1	296	7.78	7.78	0.99	
	310	5.16	5.16	0.99	
	200	10.07	10.07	0.00	
2	290	7.10	10.97	0.99	
2	290	7.10	7.10	0.99	
	310	5.62	5.62	0.99	
	290	6.29	6.29	0.99	
3	296	5.51	5.51	0.99	
	310	4.46	4.46	0.99	
	200	10.05	10.05	0.00	
	290	10.05	10.05	0.96	
4	296	7.78	7.78	0.99	
	310	5.16	5.16	0.99	
	290	7.89	7.89	0.99	
Maltol	296	6.79	6.79	0.99	
	310	6.12	6.12	0.99	

Table S4	
K_{SV} and k_{α} values for the binding of HSA to the Cu(II)	complexes and maltol at three different temperature

Table S5

 K_{b} and n values for the binding of HSA to the Cu(II) complexes at three different temperatures.

Compound	Т(К)	K _b (×10 ⁵ M ⁻¹)	n	R ²
	290	13.18	1.03	0.96
1	296	8.51	1.01	0.99
	310	1.25	0.90	0.99
	290	102.33	1.16	0.99
2	296	26.92	1.09	0.99
	310	3.80	1.03	0.99
	290	27.54	1.1	0.99
3	296	22.38	1.1	0.99
	310	3.39	1.04	0.99
	290	144.54	1.18	0.96
4	296	41.69	1.12	0.99
	310	2.04	0.93	0.99
	290	1.95	0.90	0.99
Maltol	296	0.54	0.82	0.99
	310	0.38	0.80	0.99

Table S6 Thermodynamic parameters for the binding of HSA to the Cu(II) complexes at three different temperatures.

Compound	Т(К)	∆G°(kj mol⁻¹)	∆H° (kj mol⁻¹)	ΔS° (j mol ⁻¹ K ⁻¹)
	290	-27.06		
1	296	-29.59	95.32	422.35
	310	-35.50		
	290	-38.92		
2	296	-36.44	-80.77	-193.52
	310	-33.11		
	290	-35.75		
3	296	-35.98	-82.21	-158.71
	310	-32.82		
	200	20.75		
	290	-59.75	444 47	604.04
4	296	-37.51	-144.17	-604.84
	310	-31.51		
	290	-29.37		
Maltol	296	-26.82	-53.84	-86.04
	310	-27.18		

Figure S1. Mass spectrum of $[Cu(mal)(4,4-dibromo-2,2-bpy)(H_2O)]\cdot NO_3(1)$

Figure S2. Mass spectrum of [Cu(mal)(bpy)]₂PF₆(2)

Figure S3. Mass spectrum of [Cu(mal)(1,10 phen)]₂PF₆ (3)

Figure S4. Mass spectrum of [Cu(bpy)(mal)(NO₃)] (4)

Figure S5. Fluorescence emission spectra of HSA (1.0 $*10^{-6}$ M) in different concentrations of complexes 1, 2, 3, 4 and maltol corresponding to (0.00, 0.09, 0.19, 0.29, 0.39, 0.49, 0.59 and 0.69 µm) with the excitation wavelength at 280 nm in 5 mM Tris_HCl/50 mM NaCl buffer, pH 7.4, at temperatures (B: 296 and C: 310). The Arrow shows the intensity changes upon increasing the concentration of the quencher. Inset: The Stern–Volmer plots F₀/F versus [complex] for fluorescence quenching of HSA by the complexes at three different temperatures.

Figure S6. Molecular docking studies of complexes 1, 2, 3, 4 and maltol ligand with HSA. B: Hydrophobic interactions exist between the compound and HSA.