Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Interesting photoluminescence behaviour in graphitic carbon nitride

quantum dots attached PbCrO₄ colloidal nanostructures

Tapas Kumar Mondal, Shyamal K. Saha*

School of Materials Sciences, Indian Association for the Cultivation of Science Jadavpur,

Kolkata, 700032, India

*E-mail: <u>cnssks@iacs.res.in</u>

***** Quantum Yield (QY) calculations:

We have calculated relative fluorescence quantum yield of as-synthesized graphitic carbon nitride quantum dots using following expression

$$\Phi_{\rm S} = ({\rm Is/Ir}) \times ({\rm Ar/As}) \times (\eta {\rm s2/\eta r2}) \times \Phi_{\rm r}$$

Where r and s refer to the reference and the sample respectively, Φ is the fluorescence quantum yield, I is the measured integrated fluorescence emission intensity, A is the optical density and η is the refractive index of the solvents. Here, we have use Quinine sulphate in 0.1M H₂SO₄ (Φ r (QY) = 0.54 at 360 nm) as a standard.

So, as-synthesized CNQD gives 19.2 % QY.

***** Detection limit calculation:

Lower detection limits of PbCrO₄ are calculated using the following expression, $3\sigma/b$, where σ is the standard deviation of blank and b is the slope of the calibration curve.

Figure S1 Selectivity of the formation of PbCrO4 nano structures.

Figure S2 Photoluminescence spectra of CNQD at 320nm excitation after gradual addition of different ions (S₂O₃²⁻, S₂O₈²⁻,ClO₄⁻, MnO₄⁻)

Figure S3: PL quenching spectra of CNQD at different pH medium after addition of Pb²⁺ ions.

Figure S4 Spectral overlap between absorption spectra of $Cr_2O_7^{2-}$ and excitation spectra of

CNQD.

Figure S5 Zeta potential of CNQD after addition of $Cr_2O_7^{2-}$ ions.

Figure S6 (a) TEM image of PbCrO₄ nanostructure; (b) HR-TEM image of PbCrO₄ nanostructure; (c) EDX spectra of PbCrO₄ nanostructure.

Figure S7 PL spectra of PbCrO4 nano structure at different excitation wavelength.

Figure S8 Nonlinear curve of Stern-Volmer plot for yellow PbCrO4 pigment, inset shows the fitting curve of the linearity of Stern-Volmer plot for PbCrO4 at lower concentration.

Figure S9 PL quenching efficiency of different metal ions in pure CNQD solutions.

Figure S10 Fitting Nonlinear curve of Stern-Volmer plot during in-situ formation of colloidal PbCrO4, inset shows the fitting curve of the linearity of Stern-Volmer plot for Pb(II)ions at lower concentration.

Figure S11 Fitting Curve of Stern-Volmer plot for Cr₂O₇²⁻

Figure S12 PL spectra of CNQD after gradual addition of different metal ions in presence of

 $Cr_2O_7^{2-}$

Figure S13 PL spectra of CNQD after gradual addition of different metal ions in presence of $Cr_2O_7^{2-}$