Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

New Journal of Chemistry

Electronic Supplementary Information

The vital role of ditopic N-N bridging ligands with different lengths in the formation of new binuclear dioxomolybdenum(VI) complexes: Synthesis, crystal structures, supramolecular framework and protein binding studies

Debanjana Biswal^a, Malini Roy^a, Nikhil Ranjan Pramanik^{*b}, Suvendu Paul^c, Michael G. B

Drew^d, Syamal Chakrabarti^{*a}

^aDepartment of Chemistry, University College of Science, 92, Acharya Prafulla Chandra Road, Kolkata: 700009, West Bengal, India.

^bDepartment of Chemistry, Bidhannagar College, EB-2, Sector1, Salt Lake, Kolkata: 700064, India.

^cDepartment of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal- 741235, India.

^dDepartment of Chemistry, The University of Reading, Whiteknights, Reading RG6 6AD, UK.

Table of Contents:

- Fig. S1: IR spectra of (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4 in KBr pellets.
- Fig. S2: UV-Vis spectra of (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4 in CH₂Cl₂ at 298 K.
- Fig. S3: Cyclic voltammograms of (a) complex 2, (b) complex 3 and (c) complex 4 in DMF at 298K.
- Fig. S4: Hirshfeld surface plots of (a) complex 1, (b) complex 2 and (c) complex 3 mapped with d_{norm}.
- Fig. S5: Frontier orbitals of (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4.
- Fig. S6: TG-DTA curves for (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4.
- Fig. S7: Overlap of emission spectra of BSA and absorption spectra of (a) complex 1, (b) complex 2 and (c) complex 4.
- Fig. S8: Molecular docking images of (a) complex 2, (b) complex 3 and (c) complex 4 with

BSA, residues surrounding the binding sites is highlighted.

- Table S1: Fingerprint plots of complex 1
- Table S2: Fingerprint plots of complex 2
- Table S3: Fingerprint plots of complex 3
- Table S4: Fingerprint plots of complex 4
- Table S5: Hirshfeld surface volume and surface area of complexes 1-4
- Table S6: Förster Resonance Energy Transfer (FRET) parameters for the ligand and the complexes 1-4 with BSA
- **Table S7:** Results of molecular docking: Adjacent residues and hydrogen bonding interactions

(a)

Fig. S1: IR spectra of (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4 in KBr pellets.

(a)

(b)

(**d**)

Fig. S2: UV-Vis spectra of (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4 in CH₂Cl₂ at 298 K.

Fig. S3: Cyclic voltammograms of (a) complex 2, (b) complex 3 and (c) complex 4 in DMF at 298K.

(a)

(b)

Fig. S4: Hirshfeld surface plot of (a) complex 1, (b) complex 2 and (c) complex 3 mapped with d_{norm}.

HOMO-1

HOMO-2

НОМО

HOMO-3

HOMO-4

LUMO

LUMO+1

LUMO+2

LUMO+3

LUMO+4

(a)

НОМО

HOMO-1

HOMO-2

HOMO-3

HOMO-4

LUMO

LUMO+1

LUMO+2

LUMO+3

LUMO+4

(b)

НОМО

HOMO-1

HOMO-2

HOMO-3

HOMO-4

LUMO

LUMO+1

LUMO+2

LUMO+3

LUMO+4

(c)

Fig. S5: Frontier orbitals of (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4.

(a)

(c)

(**d**)

Fig. S6: TG-DTA curves for (a) complex 1, (b) complex 2, (c) complex 3 and (d) complex 4.

Fig. S7: Overlap of emission spectra of BSA and absorption spectra of (a) complex 1, (b) complex 2 and (c) complex 4.

(a)

(b)

(c)

Fig. S8: Molecular docking images of (a) complex 2 (b) complex 3 and (c) complex 4 with BSA, residues surrounding the binding sites is highlighted.

Table S1: Fingerprint plots of complex 1

Table S2: Fingerprint plots of complex 2

Table S3: Fingerprint plots of complex 3

 Table S4: Fingerprint plots of complex 4

Complex	Surface Volume (Å ³)	Surface Area (Å ²)
1	1068.89	892.34
2	1078.04	909.29
3	1252.64	974.82
4	1169.43	896.26

Table S5: Hirshfeld surface volume and surface area of complexes 1-4

Table S6: Förster Resonance Energy Transfer (FRET) parameters for the ligand and the complexes 1-4 with BSA

Compound	$J (\mathrm{M}^{-1} \mathrm{cm}^{3})$	$R_{ heta}$ (nm)	<i>r</i> (nm)	E
H ₂ L	2.09×10^{-14}	2.87	2.90	0.68
1	1.77×10^{-14}	2.80	2.93	0.63
2	3.41×10^{-14}	2.13	2.25	0.59
3	3.25×10^{-14}	3.10	3.40	0.53
4	2.55×10^{-14}	2.98	3.31	0.54

Table S7: Results of molecular docking: Adjacent residues and hydrogen bonding interactions

Complex	Hydrogen bonding interactions	Adjacent amino acids
BSA…Complex 1	(Leu-115)-C-H···O-Mo = 2.5 Å (Arg-185)-N-H···O-Mo = 1.7 Å (Thr-518)-O-H···Br = 1.7 Å (Arg-458)-N-H···O-Mo = 1.8 Å (Arg-458)-C-H···O-Mo = 1.0 Å (Asp-108)-O···H-C = 2.2 Å (Tyr-147)-N-H···Br = 1.8 Å (His-145)-C-H···Br = 2.2 Å (Arg-458)-N-H···O-Mo = 2.5 Å (Ser-192)-O···H-C = 2.3 Å (Arg-144)-N-H···S = 1.9 Å	Leu-112, Leu-115, Tyr-147, Lys-114, Arg-144, Arg-185, Arg-458, Ser-192, His-145, Thr-518, Asp-108

	(Arg-144)-N-H…Cl-(solvent)= 2.7 Å	
	(Leu-112)-N-H…Cl-(solvent)= 0.9 Å	
	(Lys-114)-N···H-C-CH ₂ -S = 0.8 Å	
	(Lys-114)-C-H…N-N = 0.8 Å	
	(Arg-185)-N-H···O-Mo = 2.8 Å	
	(Pro-117)-C-H···O-Mo = 1.7 Å	
	(Arg-185)-C-H···O-Mo = 2.1 Å	
	(Thr-518)-O…H-C = 2.4 Å	
	(Ser-428)-O…H-C = 1.8 Å	
	(Thr-514)-O···H-C-(solvent) = 2.9 Å	
	(Thr-514)-C-H···Cl-(solvent)= 2.1 Å	
	(Glu-186)-O…H-C-(bpe) = 2.2 Å	
	(Glu-186)-O…H-C-(bpe) = 2.2 Å	
	(Glu-186)-O…H-C-(bpe) = 3.0 Å	
	(Lys-431)-C-H···O-Mo = 2.5 Å	Ala-193, Leu-115, Leu-178,
	(Lys-431)-C-H···O-Mo = 2.0 Å	Ile-181, Tyr-451, Glu-186,
BSA…Complex 2	(Ala-193)-C-H…Br = 1.1 Å	Arg-185, Arg-435, Pro-117,
	(Ala-193)-C-H…Br = 2.3 Å	Thr-190, Thr-518, Lys-431,
	(Ile-181)-C-H···O-Mo = 2.9 Å	Ser-428
	(Ser-428)-O-H…O-Mo = 2.2 Å	
	(Leu-178)-O···H-C = 2.3 Å	
	(Leu-178)-O···H-C = 2.9 Å	
	$(Tyr-451)-O\cdots H-C-S = 2.4 \text{ Å}$	
	$(Arg-435)-C-H\cdots S = 2.4 \text{ Å}$	
	(Lys-431)-C-H…S-Mo = 1.6 Å	
	(Leu-115)-O···H-C-S = 2.8 Å	
	(Glu-186)-O…H-C = 2.5 Å	
	(Thr-190)-O…H-C = 1.9 Å	
	(Glu-186)-O…H-C-(tmp) = 2.7 Å	Glu-186, Glu-399, Gln-430,
BSA…Complex 3	(Gln-403)-N-H···O-Mo = 2.8 Å	Gln-521, Arg-144, Arg-427,
	(Gln-521)-N-H···O-Mo = 2.0 Å	Arg-458, Pro-516, Thr-190,

	(Arg-427)-N-H···O-Mo = 2.9 Å	His-145, Asp-108, Ser-428,
	(Arg-427)-N-H···O-Mo = 1.9 Å	Ile-455
	(Pro-156)-C-H···Br = 3.1 Å	
	(Glu-399)-O…H-C-(tmp) = 2.8 Å	
	(Thr-190)-O-H…Br = 1.6 Å	
	(Thr-190)-C-H···Br = 2.0 Å	
	$(Arg-144)-O\cdots H-C = 2.5 \text{ Å}$	
	(His-145)-N…H-C = 2.4 Å	
	(Asp-108)-O…H-C = 2.9 Å	
	(Arg-458)-C-H…S = 1.9 Å	
	(Ile-455)-С-Н···О-Мо = 2.7 Å	
	(Ser-428)-C-H···O-Mo = 1.6 Å	
	(Ile-455)-C-H···O-Mo = 1.8 Å	
	$(Ser-428)-O\cdots H-C-(tmp) = 1.0 \text{ Å}$	
	(Thr-190)-O…Br-C = 1.8 Å	
	(Ser-109)-C-H···O-Mo = 1.9 Å	
	(Arg-458)-N-H…O-Mo = 1.9 Å	
	(Asp-111)-N-H…O-Mo = 2.1 Å	
	(Pro-110)-C-H···O-Mo = 2.7 Å	
	(Glu-424)-O…H-C=O = 2.9 Å	
	(Pro-110)-C-H···O-Mo = 1.6 Å	
	(Leu-115)-O…H-C-(bix) = 2.2 Å	Leu-115, Ile-181, Tyr-160,
BSA…Complex 4	(Leu-115)-O…H-C-(bix) = 2.8 Å	Ser-109, Arg-185, Arg-458,
	(Lys-116)-C-H···Br = 1.5 Å	Asp-111, Pro-110, Pro-117,
	(Lys-116)-C-H…Br = 0.9 Å	Glu-424, Lys-116
	(Arg-185)-N…H-C-(bix) = 0.7 Å	
	(Ile-181)-C-H···O-Mo = 1.8 Å	
	(Pro-117)-C-H···O-Mo = 1.2 Å	
	$(Tyr-160)-C-H\cdots S = 2.3 \text{ Å}$	
	$(Tyr-160)-O\cdots H-C-S = 2.6 \text{ Å}$	
	$(Glu-424)-O\cdots H-C-S = 2.8 \text{ Å}$	

(Ile-181)-C-H···O-Mo = 2.4 Å	
(Pro-117)-C-H···O-Mo = 2.2 Å	