Amplification of Active Sites and Porosity for QDs Adsorption Via

Induction of Rare Earth Element La into TiO₂ for Boosting

Photovolatic Effect in QDSSC's

R. Shwetharani^{ab}, T. Sushmitha^a, G U Preethi^a, R. Geetha Balakrishna^{a*}

a: Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Bangalore rural, 562112, India b: Department of Chemistry, School of Engineering Technology, Jain University, Bangalore rural, 562112, India

*Corresponding author: br.geetha@jainuniversity.ac.in

Supporting Information:

Material	Element	Weight (%)	Atomic (%)
TiO ₂	O K	46.08	71.9
	Ti K	53.92	28.1
4 % LaTiO ₂	ОК	29.66	60.53
	Ti K	51.37	35.01
	La L	18.97	4.46

Table S1. Elemental analysis of TiO₂ and 4 % La-TiO₂

Table S2. Elements present in La-TiO₂/CdS/ZnS

Element	Weight %	Atomic %
O K	29.37	45.22
S K	5.85	10.05

CdL	13.65	6.69
TiK	35.55	30.52
LaL	10.35	4.11
ZnK	5.23	4.41

Table S3. BET surface area and pore volume values of TiO_2 and $LaTiO_2$

Nanomaterial	Surface area m ² /g	Pore volume Cm ³ g ⁻¹	Pore diameter nm
TiO ₂	17.2	0.03384	8.9346
1 % LaTiO ₂	41.536	0.0816	7.862
2 % LaTiO ₂	47.741	0.0784	6.573
3 % LaTiO ₂	86.808	0.2322	10.702
4 % LaTiO ₂	97.246	0.255	10.49
5 % LaTiO ₂	61.595	0.137	7.857

Figure S2 a) UV-visible absorption spectra of TiO₂ and 4% La-TiO₂ b) Tau plot of TiO₂ and 4% La-TiO₂ (c)-(d) Calculated and depicted band edge potential of TiO₂ and La-TiO₂.

Figure S3. EDX mapping images of 4 % La-TiO₂

Figure S4. SEM images of a) La-TiO₂/CdS/ZnS b) TiO₂/CdS/ZnS

Figure S5. EDX analysis curve of La-TiO₂/CdS/ZnS

Figure S6. BET adsorption-desorption isotherms of a) TiO_2 b) LaTiO₂ and BJH pore size distribution of c) TiO_2 d) 4 % LaTiO₂

Figure S7. UV-visible absorption spectra of TiO₂ and La-TiO₂ with SILAR deposited CdS QDs