Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

A robust 3D In-MOF with imidazole acid ligand as fluorescent sensor

for sensitive and selective detection of Fe³⁺ ions

Peipei Cen,*a# Chen Liang,b# Lijuan Duan,b Meilin Wang,a Danian Tian,a and Xiangyu Liu*bc

^a College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China

^b State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

^c State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China

These authors contributed equally to this work.

*Corresponding author Dr. Peipei Cen E-mail: 13895400691@163.com

Dr. Xiangyu Liu

E-mail: xiangyuliu432@126.com

Contents

Fig. S1 IR spectra of 1.

Fig. S2 PXRD patterns for 1.

Fig. S3 TG curves of 1.

Fig. S4 Solid-state fluorescence emissions recorded at room temperature for free ligand and **1**.

Fig. S5 Solid state quantum yield determination result of 1 at ambient condition.

Fig. S6 PXRD patterns of 1 treated by the Fe^{3+} aqueous solution.

Table S1. Selected bond lengths [Å] and bond angles [°] for 1.

 Table S2. Selected hydrogen bond lengths [Å] and bond angles [°] for 1.

Table S3. Comparison of detection capacity of 1 towards Fe ion with other materials.

References

Fig. S1 IR spectra of 1.

Fig. S2 PXRD pattern of 1.

Fig. S3 TG curves of 1.

Fig. S4 Solid-state fluorescence emissions recorded at room temperature for free ligand and 1.

Fig. S5 Solid state quantum yield determination result of 1 at ambient condition.

Fig. S6 PXRD patterns of 1 treated by the Fe^{3+} aqueous solution.

Compound 1					
In(1)-O(1)	2.169(3)	In(1)-O(5) #3	2.098(3)		
In(1)-O(3)#1	2.175(3)	In(1)-O(5)	2.101(3)		
In(1)-O(4) #2	2.198(3)	In(1)-N(2) #4	2.238(3)		
O(1) -In(1) - O(3) #1	99.71(10)	C(9) -N(2)) -C(11	105.4(3)		
O(1)-In(1)-O(4) #2	96.80(10)	C(11) -N(2)-In(1) #7	128.8(2)		
O(1)-In(1)-N(2) #3	178.67(10)	O(5) #4-In(1)-O(5)	162.571(18)		
O(3) #1-In(1)-O(4) #2	163.38(10)	O(5)-In(1)-N(2) #3	96.47(12)		
O(3) #1-In(1)-N(2) #3	81.56(10)	O(5) #4-In(1)-N(2) #3	100.77(11)		
O(4) #2-In(1)-N(2) #3	81.92(11)	C(7) - O(1) - In(1)	127.1(2)		
O(5)-In(1)-O(1)	83.98(11)	C(8)-O(3)-In(1) #5	129.2(2)		
O(5) #4-In(1)-O(1)	78.73(10)	C(8)-O(4)-In(1) #2	129.0(2)		
O(5)-In(1)-O(3) #1	89.10(10)	In(1) #6-O(5)-In(1)	123.67(12)		
O(5) #4-In(1)-O(3) #1	95.89(10)	C(9)-N(2)-In(1) #7	125.7(3)		
O(5)-In(1)-O(4) #2	94.57(10)	O(5) #4-In(1)-O(4) #2	85.41(10)		
Symmetry transformations used to generate equivalent atoms:					
#1 +X,1-Y,1/2+Z; #2 3/	2-X,3/2-Y,1-Z; #3	1/2+X,3/2-Y,1/2+Z; #4 3/2-2	X,-1/2+Y,3/2-Z; #5		
+X,1-Y,-1/2+Z; #6 3/2-X,1/2+Y,3/2-Z; #7 -1/2+X,3/2-Y,-1/2+Z					

Table S1. Selected bond lengths [Å] and bond angles [°] for **1**.

Table S2. Selected hydrogen bond lengths [Å] and bond angles [°] for 1.

D−H…A	d(D-H)/Å	d(H···A)/Å	d(D···A)/Å	D−H···A/°		
O(5)-H(5)···O(2)	0.86	1.97	2.777(4)	156.3		
O(6)−H(6A)····O(2)	0.85	1.95	2.781(5)	165.7		
O(7)-H(7)···O(2)#1	0.85	1.84	2.686(16)	172.4		
Symmetry transformations used to generate equivalent atoms:						

#1 +X,1-Y,-1/2+Z

Materials Solvent Detection Limit Ref. $1.27 \times 10^{-5} \text{ M}$ [Tb(tftba)1.5(phen)(H₂O)]_n Water 1 $[Tb(HL)_{1.5}(H_2O)(DMF)] \cdot 2H_2O$ $2.0 \times 10^{-5-}$ M 2 aqueous $2.2 \times 10^{-5} \text{ M}$ $[In(L)(\mu_2-OH)] \cdot 0.5H_2O$ Water This work Eu3+@MIL-53-COOH (Al) $5.0\times 10^{\text{-5}}\ M$ 3 Water 4 BUT-15 Water $8.0\times10^{\text{-5}}\,M$ $9.0 \times 10^{-5} \text{ M}$ 5 $[Eu(bpda)_{1.5}] \cdot H_2O_n$ Water 6 $9.06 \times 10^{-5} \text{ M}$ ${[Cd_{3}(HL)_{2}(H_{2}O)_{3}] \cdot 3H_{2}O \cdot 2CH_{3}CN}_{n}$ Water 7 $2.0\times10^{\text{--}4}\ M$ $[Zn_5(hfipbb)_4(trz)_2(H_2O)_2]_n$ Water $1.8 \times 10^{-4} \text{ M}$ 8 $[(CH_3)_2NH_2] \cdot [Tb(bptc)]$ Ethanol

Table S3. Comparison of detection capacity of 1 towards Fe ion with other materials.

EuL ₃	Ethanol	10 ⁻⁴ M	9
$Eu(acac)_3 \subset Zn(C_{15}H_{12}NO_2)_2$	DMF	5.0×10^{-3} M	10

References

- (1) H.-H. Yu, J.-Q. Chi, Z.-M. Su, X. Li, J. Sun, C. Zhou and Q. Liu, CrystEngComm., 2020, 22, 3638-3643.
- (2) F. Zhao, X.-Y. Guo, Z.-P. Dong, Z.-L. Liu and Y.-Q. Wang, Dalton Trans., 2020, 47, 8972-8982.
- (3) Y. Zhou, H.-H. Chen and B. Yan, J. Mater. Chem. A., 2014, 2, 13691-13697.
- (4) H.-J. Zhang, R.-Q. Fan, W. Chen, J.-Z. Fan, Y. W.-Dong, Y. Song, X.-Du, P. Wang and Y. L. Yang, *Cryst. Growth Des.*, 2016, 16, 5429-5440.
- (5) J. Wang, J.-R. Wang, Y. Li, M. Jiang, L.-W. Zhang and P.-Y. Wu, New J. Chem., 2016, 40, 8600-8606.
- (6) W.-Q. Tong, W.-N. Liu, J.-G. Cheng, P.-F. Zhang, G.-P. Li, L. Hou and Y. -Y. Wang, *Dalton Trans.*, 2018, 47, 9466-9473.
- (7) B.-L. Hou, D. Tian, J. Liu, L.-Z. Dong, S. -L. Li, D.-S. Li and Y.-Q. Lan, *Inorg. Chem.*, 2016, 55, 10580-10586.
- (8) X.-L. Zhao, D. Tian, Q. Gao, H.-W. Sun, J. Xu and X.-H. Bu, Dalton Trans., 2016, 45, 1040-1046.
- (9) M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, ACS Appl. Mater. Interfaces., 2013, 5, 1078-1083.
- (10) Q. Tang, S. Liu, Y. Liu, J. Miao, S. Li, L. Zhang, Z. Shi and Z. Zheng, Inorg. Chem., 2013, 52, 2799-2801.