Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

1 Supporting Information

2	Highly atom-economic bioactive nanocarrier for synergistic enhanced
3	antitumor with reduced liver injury
4	Jiacheng Wang, Wenshu Qiao, Haitian Zhao, Jianjun Cheng, Ying Han, Xin Yang *
5	School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West Dazhi Street,
6	Nan Gang District, Harbin, Heilongjiang, 150001, P.R.China
7	*Corresponding Author: yangxin@hit.edu.cn
8	

- 1 Experimental procedures
- 2 Separation, extraction and identification of active natural products.
- 3 The following compounds were isolated and purified according to our previous experience
- 4 accumulation and experimental results of the laboratory¹⁻³.
- 5

Oleanolic acid

Glycyrrhetinic acid

Betulin

6 Scheme 1. Structural formula of active natural products

7 *Oleanolic acid (OA)* crude extract were obtained by chemical fractionation of 95% (v/v)

8 ethanol extract of *Dry papaya powder*. The crude extracts were eluted with petroleum ether

9 and carbon tetrachloride. The obtained extracts were then separated and purified by

10 macroporous resin (D4020). Then repeated and purification on a reversed-phase C18 column.

11 Betulin (Bet) crude extracts of Dry birch bark were ultrasonically extracted with 95% (v/v)

12 methanol. The crude extracts were eluted with petroleum ether and ethyl acetate. The

13 obtained extract was purified by macroporous resin (D101). Then repeated purification on

14 reverse-phase C18 column.

15 *Glycyrrhetinic acid (GA)* was obtained by repeated decoction. The extraction of the licorice

16 powder is made with boiling water. The concentrate is heated under reflux with 5% dilute

17 sulfuric acid, washed to neutral, dried and dissolved in hot chloroform, filtered and subjected

18 to column chromatography. Recrystallization gave glycyrrhetinic acid crystals.

- 19 Analysis was conducted by high-performance liquid chromatography (HPLC) and
- 20 compounds were identified by comparing with standards. Furthermore, completion of the
- 21 structural characterization was performed by mass spectrometry data and protonic nuclear
- 22 magnetic resonance spectrometric data and comparison with the previously published data.
- 23 Replica-exchange molecular dynamics (REMD) simulation
- 24 To understand the self-assembly process, all-atom replica exchange molecular dynamics
- 25 (REMD) simulations was performed using Gromacs software.⁴ Carriers (OA) and drug (PTX)
- in simulation system, the number is 14 and 1, and the simulation used the Charmm36 force

- 1 field, TIP3P model was used to model aqueous solution sodium ions were added to balance
- 2 the system negative charge. The long-range electrostatic action was calculated by PME
- 3 method, the cut-off radius was set to 10 nm, and the van der Waals force interaction cut-off
- 4 radius was 12 nm. The REMD simulation system is divided into two parts, OP and UP. The
- 5 two systems are first subjected to a 200 ps MVT balance at 300K. In the temperature range of
- 6 300K~700K, the online server (http://folding mc uu se/remd/) was used to predict the
- 7 temperature distribution of each copy, and 35 copies were generated.⁵ All replicas were run in
- 8 parallel, each replica was subjected to a 50 ns REMD simulation, the simulated time step was
- 9 set to 2fs, and replica exchange attempts between adjacent replicas were made every 500
- steps. The trajectory was saved every 10 ps, and the simulation process was visually analyzed
- 11 using YASARA and VMD software. All the above calculations are conducted on the
- 12 MolDesigner Molecular Simulation Platform^{6, 7}.

- 2 Figure S1 SEM images of GA-PTX NPs and Bet-PTX NPs. All GA-PTX NPs are
- 3 nanosheets morphology and all Bet-PTX NPs are nanofibers morphology

- Figure S2 SEM images of OA-PTX NPs. The nanofibers morphology is obvious at the
- yellow arrow.

encapsulation efficiency of OA-PTX NPs are 17.1% and 62.6%, respectively.

S-6

- Figure S5. Wettability measurement of NPs. Three-phase contact angles of free OA and
- 1 2 3 4 OA NPs and OA-PTX NPs. All NPs prepared by the emulsion solvent evaporation method
- showed substantially improved hydrophilicity.

Figure S6. OA-PTX NPs drug release profile. Drug release profiles of OA-PTX NPs at 1 three different pH values (7.3, 6.8, and 5.5) at room temperature. Data are expressed as mean

2 3 4 \pm s.e.m. (n = 3)

Figure S7. Drug release in PBS medium containing 20% lecithin. Data are expressed as 1 2 3 mean \pm s.e.m. (n = 3)

- Figure S8. Stability of OA-PTX NPs. a. OA-PTX NPs of freeze-dried powders were 1
- redispersion in double-distilled water at different storage times. b. Stability in the presence of
- 2 3 serum c. OA-PTX NPs size after different dilution factors
- 4

Figure S9. Cell uptake representative microimages. 4T1 cells incubated with OA-PTX NPs at different times. Magnification ×400

1

- after demulsification.
- 2 3

1 Figure S13. Supplementary data for Haematoxylin and eosin (H&E).

1 Table S1. Characterization of OA-PTX NPs by DLS.

Formula abbreviation	Particle Diameter (nm)	PDI	Zeta Potential (mV)			
OA-PTX (5%)	281±3	0.05±0.02	-20.2±1.6			
OA-PTX (10%)	271±5	0.04 ± 0.01	-20.0 ± 1.6			
OA-PTX (15%)	263±7	0.05±0.03	-19.7±1.5			
OA-PTX (20%)	252±6	0.04±0.02	-15.2±1.2			
OA-PTX (25%)	283±8	0.1±0.03	-12.1±0.9			
OA-PTX (30%)	365±10	0.24±0.09	-9.2±0.7			
Data are presented as mean ± s.d. (<i>n = 3</i>)						

1 Table S2. Characterization of OA-PTX NPs by DLS.

Formula abbreviation	Particle Diameter (nm)	PDI	Zeta Potential (mV)			
GA-PTX (5%)	3001±1596	1	-17.2±1.3			
GA-PTX (10%)	2632±956	1	-21.3±1.7			
GA-PTX (15%)	3231±1326	1	-15.9±1.2			
GA-PTX (20%)	3585±1548	1	-15.7±1.2			
GA-PTX (25%)	3130±2036	1	-16.2±1.2			
GA-PTX (30%)	4702±1986	1	-12.5 ± 1.0			
Data are presented as mean ± s.d. (<i>n = 3</i>)						

1 Table S3. Characterization of OA-PTX NPs by DLS.

Formula abbreviation	Particle Diameter (nm)	PDI	Zeta Potential (mV)			
Bet-PTX (5%)	681±68	0.45±0.15	-8.5±0.7			
Bet-PTX (10%)	730±59	0.50 ± 0.14	-6.6±0.5			
Bet-PTX (15%)	683±32	0.57±0.16	-10.7 ± 0.8			
Bet-PTX (20%)	913±67	0.67±0.13	-7.6±0.6			
Bet-PTX (25%)	736±82	0.52±0.18	-9.4±0.7			
Bet-PTX (30%)	679±55	0.67±0.20	-6.1±0.5			
Data are presented as mean \pm s.d. ($n = 3$)						

1 Table S4. Fluorescence intensity of tumor tissue at different time.

Tumor tissue						
Time (h)	1	2	4	8	12	24
Average fluorescence intensity	18616	16254	13887	10212	6652	2602

2

1 Table S5. The fluorescence intensity of main tissues at differe

Time (b)	Main tissues					
Time (n)	Heart	Liver	Spleen	Lung	Kidney	Tumor
1	556	3732	993	1366	3849	3098
8	216	961	455	817	2178	2312
24	105	468	254	262	761	659

1 References

15

- K. Zhi, H. Zhao, X. Yang, H. Zhang, J. Wang, J. Wang and J. M. Regenstein, *Nanoscale*, 2018, 10, 3639-3643.
- K. Zhi, H. Zhao, X. Yang, H. Zhang, J. Wang and Z. Wang, *ChemPlusChem*, 2018, 83, 797-803.
- J. Wang, H. Zhao, K. Zhi and X. Yang, ACS Applied Materials & Interfaces, 2020, 12, 6827-6839.
- 8 4. B. Hess, C. Kutzner, D. v. d. Spoel and E. Lindahl, J. Chem. Theory Comput., 2008, 4, 435-447.
- A. Patriksson and D. v. d. Spoel, *Physical chemistry chemical physics : PCCP*, 2008, 10, 2073-2077.
- E. Krieger, T. Darden, S. B. Nabuurs and A. V. Finkelstein, *Proteins Structure Function* & *Bioinformatics*, 2004, 57, 678-683.

S-22

14 7. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics, 1996, 14, 33-38.