Supporting Information

Cyclohexyl-substituted Non-fullerene Small-molecule Acceptors for Organic Solar Cells

Seunggyun Hong,^{a,#} Chang Eun Song,^{b,#} Du Hyeon Ryu, ^b Sang Kyu Lee,^b Won Suk Shin, ^b and Eunhee Lim^{*,c}

^a Department of Chemistry, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu,
Suwon 16227, Republic of Korea

^b Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu,
Daejeon 34114, Republic of Korea

^c Department of Applied Chemistry, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemungu, Seoul 02504, Republic of Korea

#S. Hong and C. E. Song contributed equally to this work.

* Corresponding author: Tel. +82-2-6490-2465; E-mail address: ehlim@uos.ac.kr (E. Lim)

1. NMR spectra

Figure S1. ¹H NMR spectrum of Cy6Pphth.

Figure S2. ¹H NMR spectrum of Cy6NH₂.

Figure S3. ¹H NMR spectrum of Cy6MRH.

Figure S4. ¹H NMR spectrum of Cy6PRH.

Figure S5. ¹H NMR spectrum of T2-Cy6MRH.

Figure S6. ¹H (top) and ¹³C (bottom) NMR and MS spectra of T2-Cy6PRH.

Annealing	$V_{\rm OC}$ [V]	$J_{\rm SC} [{\rm mA cm}^{-2}]$	FF [%]	PCE [%]
W/O	1.03	11.04	40	4.60
90°C	1.00	9.83	41	4.00
120°C	1.00	8.81	40	3.57

Table S1. Photovoltaic properties of **T2-Cy6PRH**-based OSCs with different thermal annealing conditions^a

^{*a*}Inverted device architecture is ITO/ZnO NPs/PEIE/PTB7-Th:**T2-Cy6PRH** (1.0:2.0, chloroform, $d = \sim 100 \text{ nm}$)/MoO_x/Ag.

Figure S7. *I*–*V* curves of the device based on **T2-Cy6PRH** and PTB7-Th under different thermal annealing conditions

Figure S8. EQE curves of the PTB7-Th:**T2-Cy6PRH** device (as-cast) together with the absorption spectra of the neat **T2-Cy6PRH** and PTB7-Th films.

Figure S9. EQE curves of the PTB7-Th:**T2-Cy6PRH** device and the absorption spectra of the PTB7-Th:**T2-Cy6PRH** blend films under the as-cast and TA conditions.

Figure S10. Photocurrent density (J_{ph}) as a function of the effective voltage (V_{eff}) for OSCs based on PTB7-Th:**T2-Cy6PRH** without and with PCBM third component

Photoactive layer	$V_{\rm OC}$ [V]	$J_{\rm SC} [{\rm mA cm}^{-2}]$	FF [%]	PCE [%]
PTB7-Th:PCBM	0.83	12.34	50	5.17
	(0.82 ± 0.01)	(12.17 ± 0.16)	(49 ± 2)	(5.02 ± 0.15)

Table S2 Photovoltaic properties of OSCs based on the PTB7-Th:PCBM binary film^a

^{*a*} Inverted device architecture is ITO/ZnO NPs/PEIE/PTB7-Th:PCBM (1.0:2.0, chloroform, $d = \sim 100 \text{ nm}$)/MoO_x/Ag. The values in parentheses are the average photovoltaic properties obtained from over 10 devices.

Figure S11. (a) *J*–*V* and (b) EQE curves of the device based on PTB7-Th and PCBM.

Figure S12. Energy band diagrams of the materials used in ternary cell