Supporting Information

Strong interfacial coupling for NiS thin layer covered CdS nanorods with highly efficient photocatalytic hydrogen production

Zhaohui Chen[#], Chuchu Cheng[#], Fangshu Xing and Caijin Huang*

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.

#Zhaohui Chen and Chuchu Cheng contribute equally to the article and should be considered co-first authors.

*To whom correspondence should be addressed, E-mail: cjhuang@fzu.edu.cn;

Fig. S1. XRD pattern of pure NiS.

Fig. S2. (a) Low- and (b) high-magnification SEM images of pure NiS.

Fig. S3. (a) The plot of $(\alpha hv)^2$ versus hv of CdS, (b) Mott–Schottky plots of CdS, (c) Energy band diagram of CdS.

Fig. S4. The H₂-production rate over 25NS-C photocatalyst using different concentrations of hole scavenger under visible light irradiation. (A) 0.25 M Na₂S, 0.35 M Na₂SO₃, (B) 0.50 M Na₂S, 0.70 M Na₂SO₃, (C) 0.75 M Na₂S, 1.05 M Na₂SO₃, (D) 0.875 M Na₂S, 1.225 M Na₂SO₃, (E) 1.0 M Na₂S, 1.4 M Na₂SO₃.

Fig. S5. XRD patterns of 25NS-C before reaction and after 3h of photocatalytic reaction.

Fig S6. The LSV curves of CdS and 25NS-C samples.

Fig S7. The SEM image of 25NS-C after photocatalytic reaction.

Photocatalyst	Light source	Reactant	Activity/	References
		solution	mmol $\cdot h^{-1} \cdot g^{-1}$	
NiS/CdS	Xe-Vis	10 vol.%	49.2	1
	(≥420 nm)	lactic acid		
MoS ₂ /CdS	Xe-Vis	10 vol.%	49.8	2
	(≥420 nm)	lactic acid		
NiS/CdS	Xe-Vis	20 vol.%	30.1	3
	(≥420 nm)	lactic acid		
BP-Au-CdS	UV-vis-NIR	0.35M		
		Na ₂ S-0.25M	10.1	4
		Na ₂ SO ₃		
NiS/CdS	Xe-Vis	20 vol.%	158.7	5
	(≥420 nm)	lactic acid		
Pd@CdS/PdS	Xe-Vis (> 400 nm)	0.1M		
		Na ₂ S-0.1M	144.8	6
		Na_2SO_3		
Ni ₂ P/CdS	Xe-Vis (≥420 nm)	0.35M		
		Na ₂ S-0.25M	34.9	7
		Na ₂ SO ₃		

Table S1. Collected data of H_2 -evolution activity over CdS-based photocatalysts.

Ni(OH) ₂ /CdS	Xe-Vis (≥420 nm)	10 vol.% ethanol (pH 14.7)	35	8
Co ₂ P/CdS	Metal halide	10 vol.%	262.16	9
	lamp (sunlight)	lactic acid		
Ni/CdS	447 nm laser	10 vol.%		
		ethanol (pH	63	10
		14.7)		
Ni ₂ P/CdS	Xe-Vis (≥420 nm)	1.25M		
		Na ₂ S-1.75M	~1200 μ mol \cdot h ⁻¹ \cdot g ⁻¹	11
		Na ₂ SO ₃		
NiS/CdS	Xe-Vis (≥420 nm)	0.75M		
		Na ₂ S-1.25M	401.7 mmol· h^{-1} · g^{-1}	This work
		Na ₂ SO ₃		

References

1. K. He and L. Guo, International Journal of Hydrogen Energy, 2017, **42**, 23995-24005.

2. X.-L. Yin, L.-L. Li, W.-J. Jiang, Y. Zhang, X. Zhang, L.-J. Wan and J.-S. Hu, ACS Applied Materials & Interfaces, 2016, **8**, 15258-15266.

3. Y. Zhang, Z. Peng, S. Guan and X. Fu, *Applied Catalysis B: Environmental*, 2018, **224**, 1000-1008.

4. X. Cai, L. Mao, S. Yang, K. Han and J. Zhang, ACS Energy Letters, 2018, **3**, 932-939.

5. S. Guan, X. Fu, Y. Zhang and Z. Peng, *Chemical Science*, 2018, **9**, 1574-1585.

6. Q. Sun, N. Wang, J. Yu and J. C. Yu, *Advanced Materials*, 2018, **30**, 1804368.

7. J. Wang, P. Wang, J. Hou, J. Qian, C. Wang and Y. Ao, *Catalysis Science & Technology*, 2018, **8**, 5406-5415.

8. I. Vamvasakis, I. T. Papadas, T. Tzanoudakis, C. Drivas, S. A. Choulis, S. Kennou and G. S. Armatas, *ACS Catalysis*, 2018, **8**, 8726-8738.

9. N. Li, Y. Ding, J. Wu, Z. Zhao, X. Li, Y.-Z. Zheng, M. Huang and X. Tao, ACS Applied Materials & Interfaces, 2019, **11**, 22297-22306.

10. T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk and J. Feldmann, *Nature Materials*, 2014, **13**, 1013-1018.

11. Z. Sun, H. Zheng, J. Li and P. Du, Energy & Environmental Science, 2015, 8, 2668-2676.