Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI)

Supramolecular assembly and spectroscopic characterization of indolenine - barbituric acid zwitterions

Abdul Qaiyum Ramle ^{a*}, Edward R. T. Tiekink ^{b*}, Chee Chin Fei ^c,

Nurhidayatullaili Muhd Julkapli ^c, Wan Jefrey Basirun ^{a*}

^a Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.

^b Research Centre for Crystalline Materials, School of Science & Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.

^c Nanotechnology and Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia.

*Corresponding authors: <u>qaiyum@um.edu.my</u> (A. Q. Ramle) <u>edwardt@sunway.edu.my</u> (E. R. T. Tiekink) <u>jeff@um.edu.my</u> (W. J. Basirun)

Table of contents:

No	Contents	Page
1.	Synthesis routes of $6 - 15$.	S3
2.	NMR spectra of all new compounds	S4 - S46
3.	HRMS spectra of selected compounds	S47 - S48
4.	FT-IR spectra of 12 and 22	S 49
5.	X-ray crystallographic data	S50 – S51
6.	Photophysical parameters of 22 .	S52
7.	Spectroscopic data of 19 with TFA	S53 – S54

Scheme S1: Synthesis routes of 6 – 15.

Fig. S1: ¹H NMR (400 MHz, CDCl₃) spectrum of 6.

Fig. S2: ¹³C NMR (100 MHz, CDCl₃) spectrum of 6.

 \bigcirc

Fig. S4: ¹³C NMR (100 MHz, CDCl₃) spectrum of 7.

Õ

Fig. S5: ¹H NMR (400 MHz, CDCl₃) spectrum of 8.

Fig. S6: ¹³C NMR (100 MHz, CDCl₃) spectrum of 8.

Fig. S7: ¹H NMR (400 MHz, CDCl₃) spectrum of 9.

Fig. S8: ¹³C NMR (100 MHz, CDCl₃) spectrum of 9.

Fig. S9: ¹H NMR (400 MHz, DMSO) spectrum of 10.

Fig. S10: ¹³C NMR (100 MHz, DMSO) spectrum of 10.

Fig. S11: ¹H NMR (400 MHz, CDCl₃) spectrum of 11.

0

Fig. S12: ¹³C NMR (100 MHz, CDCl₃) spectrum of **11**.

Fig. S13: ¹H NMR (400 MHz, CDCl₃) spectrum of **12**.

Ó

Fig. S14: ¹³C NMR (100 MHz, CDCl₃) spectrum of **12**.

Ó

Fig. S15: ¹H NMR (400 MHz, CDCl₃) spectrum of **13**.

Fig. S16: ¹³C NMR (100 MHz, CDCl₃) spectrum of **13**.

Fig. S17: ¹H NMR (400 MHz, CDCl₃) spectrum of **14**.

Fig. S18: ¹³C NMR (100 MHz, CDCl₃) spectrum of **14**.

Fig. S20: ¹³C NMR (100 MHz, CDCl₃) spectrum of 15.

Fig. S21: ¹H NMR (400 MHz, DMSO) spectrum of 16.

Fig. S22: ¹³C NMR (100 MHz, DMSO) spectrum of 16.

0

Fig. S23: ¹H NMR (400 MHz, DMSO) spectrum of 17.

Fig. S24: ¹³C NMR (100 MHz, DMSO) spectrum of 17.

Fig. S25: ¹H NMR (400 MHz, DMSO) spectrum of 18.

02

Fig. S27: ¹H NMR (400 MHz, DMSO) spectrum of 19.

Fig. S28: ¹³C NMR (100 MHz, DMSO) spectrum of 19.

Fig. S29: ¹H NMR (400 MHz, DMSO) spectrum of 20.

HN

0 A

Fig. S30: ¹³C NMR (100 MHz, DMSO) spectrum of 20.

Fig. S31: ¹H NMR (400 MHz, DMSO) spectrum of 21.

Fig. S32: ¹³C NMR (100 MHz, DMSO) spectrum of 21.

O

* represents MeOH peaks.

Fig. S34: ¹³C NMR (100 MHz, DMSO) spectrum of 22. * represents MeOH peak.

Fig. S35: ¹H NMR (400 MHz, DMSO) spectrum of **23**.

Fig. S36: ¹³C NMR (100 MHz, DMSO) spectrum of 23.

Fig. S37: ¹H NMR (400 MHz, DMSO) spectrum of 24.

Fig. S38: ¹³C NMR (100 MHz, DMSO) spectrum of **24**.

Fig. S39: ¹H NMR (400 MHz, DMSO) spectrum of 25.

Fig. S40: ¹³C NMR (100 MHz, DMSO) spectrum of 25.

Fig. S43: HMBC spectrum of 22. The inset image is the crucial HMBC interactions.

Fig. S44: HSQC spectrum of 22.

Fig. S45: HRMS spectrum of 12.

Fig. S46: HRMS spectrum of 13.

Fig. S48: HRMS spectrum of 15.

Fig. S50: HRMS spectrum of 23.

Fig. S51: HRMS spectrum of 24.

Fig. S52: HRMS spectrum of 25.

Fig. S53: FT-IR spectra of 12 (blue line) and 22 (purple line).

Fig. S54: Molecular packing in the crystal of **22.DMF**: (a) a side-on view of the supramolecular layer, (b) plan view of the supramolecular layer and (c) a view of the unit-cell contents in projection down the *b*-axis with one channel occupied by DMF molecules highlighted in space-filling mode. The methyl-C–H…O(DMF) and methylene-C–H…O(BA) interactions are shown as blue and brown dashed lines, respectively, and the C-H… π (ar.

D–H…A	H···A (Å)	D…A (Å)	$D - H \cdots A(^{o})$	Symmetry
				operation
N2-H2n···O3 ⁱ	2.051(14)	2.8965(17)	171.7(16)	2- <i>x</i> , 1- <i>y</i> , 2- <i>z</i>
N3–H3n···O4 ⁱⁱ	1.984(15)	2.8514(17)	172.6(16)	2- <i>x</i> , - <i>y</i> , 2- <i>z</i>
C9–H9a…O1 ⁱⁱⁱ	2.43	3.295(2)	148	1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
С17-Н17b…О5	2.53	3.483(3)	173	<i>x</i> , <i>y</i> , <i>z</i>
C9–H9b···Cg(C3-C8) ^{iv}	2.91	3.6762(18)	137	2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
C14–H14····Cg(C10-C15) ^v	2.83	3.647(3)	148	1+ <i>x</i> , <i>y</i> , <i>z</i>

Table S1: Geometric parameters characterizing the intermolecular points of contact in the crystal of **22.DMF**.

Solvent	Absorption, λ_{max} (nm) /	$\lambda_{onset} (nm)$	FWHM (nm)	$E_{gap}(eV) =$
	$\epsilon (\times 10^4 \text{ M}^{-1} \text{ cm}^{-1})$			1240 / λ_{onset}
АсОН	349 (2.72)	457	36.5	2.71
Diaxone	351 (2.80), 435 (0.79)	501	27.2, 59.0	2.48
DMSO	354 (2.77)	495	27.9	2.51
MeOH	350 (2.70)	474	31.3	2.62
THF	351 (2.75), 435 (0.78)	501	27.5, 57.2	2.48

 Table S2: Photophysical parameters of 22.

Fig. S55: Photograph of zwitterion 19 in dilute DMF solution (left) and after adding 1 equiv. of TFA (right).

Fig. S56: UV-vis absorption spectra of zwitterion 19 in dilute DMF (50 μ M) with different amounts of TFA.

Fig. S57: ¹H NMR spectrum (400 MHz, DMSO) of 19 with 10 equiv. of TFA.