Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Design of Prussian blue analogues derives double-cone

structure Ce-Fe catalysts and their enhanced performances for

the selective catalytic reduction of NO_x with NH₃

Jie Guo^{a,b}, Guodong Zhang^a, Zhicheng Tang^{a,c*}, Jiyi Zhang^{b*}

(a. State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering

Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou 730000, PR China

b. School of petroleum and chemical, Lanzhou University of Technology, Lanzhou 730050,

China.

c. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China)

*Corresponding author. Tel.: +86-931-4968083, Fax: +86-931-4968019, E-mail address: tangzhicheng@licp.cas.cn (Z.Tang); <u>zhangjiyi@lut.cn</u> (J.Zhang).

NH₃-SCR activity measurements

The NH₃-SCR activity measurement was performed in a fixed bed reactor with 0.40 g catalyst (40-60 mesh), which was carried out under a gas hourly space velocity (GHSV) of 30,000 h⁻¹. In addition, the reaction was following simulated gas: 500 ppm NH₃, 500 ppm NO, 100 ppm SO₂ (when used), 5 vol. % H₂O (when used), 5 vol. % O₂ and balance N₂. Meanwhile, the total flow rate was 200 mL min⁻¹. Finally, the product gas was analyzed using a flue gas analyzer (KM9106), a N₂O detector (G200) and an NH₃ detector (DR95C). For the concentration of the gases at steady state, the NOx and N₂ selectivity and NH₃ conversion were calculated as follows:

NO_x Conversion (%) =
$$\frac{[NO_x]_{in} - [NO_x]_{out}}{[NO_x]_{in}} \times 100\%$$

$$(1-1)$$

$$N_{2} \text{ Selectivity(\%)} = \mathbb{D}1 - \frac{2[N_{2}O]_{out}}{[NO_{x}]_{in} + [NH_{3}]_{in} - [NO_{x}]_{out} - [NH_{3}]_{out}} \mathbb{D} \times 100\%$$

$$(1-2)$$

$$NH_{3} \text{ Conversion(\%)} = \frac{[NH_{3}]_{in} - [NH_{3}]_{out}}{[NH_{3}]_{in}} \times 100\%$$

$$(1-3)$$

Where $[NO_x]_{in}$ and $[NH_3]_{in}$ are the initial concentrations of NO and NH_3 , and $[NO_x]_{out}$, $[N_2O]_{out}$ and $[NH_3]_{out}$ are the concentrations after reaction at steady state.

Scheme S1 Schematic illustration of fabrication of catalysts.

Figure S1 EDX spectrum of Ce@Ce-Fe catalyst.

Figure S2 N_2 selectivity and NH_3 conversion (inner picture) of different catalysts.

Figure S3 NO conversion of Ce@Ce-Fe under SO₂ conditions of 24 h (a) and NO conversion under H_2O and SO₂ conditions of different catalysts (b).

Figure S4 NH₃-TPD profiles of Ce@Ce-Fe and Ce@Ce-Fe-U (U represented the used catalyst) catalysts.