Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Material (ESI) for New Journal of Chemistry

Nickel Doped Copper Ferrite Ni_xCu_{1-x}Fe₂O₄ as a High Crystalline Anode Material

for Lithium Ion Batteries

Adil Saleem,^{a,1} Muhammad K. Majeed,^{b,1*} Shah-Iram Niaz,^c M. Iqbal,^c M. Akhlaq,^c M.

Zeeshan Ishfaq,^a Yujun Zhang,^a Hongyu Gong,^{a**}

^a Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials,

Ministry of Education, School of Material Science and Engineering, Shandong University,

Jinan 250061, China. Email: gong_honyu@163.com

^b Key Lab of Colloid & Interface Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shandong University, 250100, Jinan, P. R. China.

Email: drmkashifmajeed@mail.sdu.edu.cn,

^c Institute of Chemical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan, 29050,

Pakistan.

¹ These authors contributed equally to this work.

Supporting Information

Figure S1: N₂ sorption isotherms (inset: pore size distribution) of Ni_xCu_{1-x}Fe₂O₄ (a)

NCF-1, (b) NCF-2, (c) NCF-3 and (d) NCF-4.

Figure S2.TEM images of Ni_xCu_{1-x}Fe₂O₄ (a) NCF-1, (b) NCF-2, (c) NCF-3 and

(d) NCF-4.

Figure S3. EDS analysis of $Ni_xCu_{1-x}Fe_2O_4$ (a) NCF-1, (b) NCF-2, (c) NCF-3 and (d)

NCF-4.

Figure S4: CV curves of Ni_xCu_{1-x}Fe₂O₄ (a) NCF-1, (b) NCF-2 and (c) NCF-3.

Figure S5: Cycling performance of CuFe₂O₄ and NiFe₂O₄.

Figure S6: SEM images of the cycled electrode of Ni_xCu_{1-x}Fe₂O₄.

Table.S1: Crystalline size, lattice constant, X-ray density, volume, hopping length d_B and d_A for pure NixCu_{1-x}Fe₂O₄.

Samples	Crystallite size (nm)	Lattice constant (Å)	X-ray density (g/cm ³)	Volume (m ³)	dв (nm)	da (nm)
NCF-1	46.68	8.353	5.455	582.81	0.295	0.362
NCF-2	41.59	8.338	5.473	579.68	0.295	0.361
NCF-3	30.5	8.367	5.394	585.75	0.296	0.362
NCF-4	28.55	8.343	5.419	580.72	0.295	0.361

Parameters	Rs	Rct	CPE _{dl}	W	Т	
NCF-1	1.71	409	17.0	7.70	13.1	
NCF-2	3.55	186	16.5	13.3	31.9	
NCF-3	3.15	137	28.8	17.3	56.4	
NCF-4	4.60	129	20.2	15.1	17.3	

Table S2. Parameters of EIS equivalent circuit of $Ni_xCu_{1-x}Fe_2O_4$ anode at a potential of

```
1.0 V.
```

Table S3. Comparison of various anode materials in terms of their preparations and electrochemical performances.

Anode	Preparation techniques	Cycling Stability				
		Initial Discharge capacity [mAh g ⁻¹]	Capacity after n th cycles	Cycle Numbers	Current rate [mA g ⁻¹]	Ref
NiFe2O4	electrospinning	1450	550	50	100	1
NiFe2O4	Hydrothermal	1148	501	25	183	2
NiFe ₂ O ₄	Arc-discharge	1198	200	100	91.5	3
NiFe2O4	Hydrothermal	1209	257	50	100	4
NiFe2O4	Sol-gel	1401	600	80	1000	5
CuFe ₂ O ₄	electrospinning	1399	489	50	200	6
CuFe ₂ O ₄	polymer- pyrolysis	1375	551	100	112	7
NiFe ₂ O ₄	Hydrothermal	1239	470	20	100	8
Transition metal ferrite	Electrodepositi on	452	339	100	100	9
CuFe ₂ O ₄	Hydrothermal	1571	117	100	141	10
NixCu1- xFe2O4	Co- precipitation	1646	677	250	200	Our Work

References:

- Cherian C T, Sundaramurthy J, Reddy M V, Kumar P S, Mani K, Pliszka D, Sow C H, Ramakrishna S and Chowdari B V R, Morphologically robust NiFe₂O₄ nanofibers as high capacity Li-ion battery anode material, *ACS Appl. Mater*. *Interfaces*, 2013, 5, 9957.
- Mujahid M, Khan R U, Mumtaz M, Mubasher, Soomro S A, Ullah S, NiFe₂O₄ nanoparticles/MWCNTs nanohybrid as anode material for lithium-ion battery, *Ceram, Intl.*, 2019, 45, 8486.
- **3.** Han D, Song G, Liu B and Yan H, Core-shell-structured nickel ferrite/onion-like carbon nanocapsules: an anode material with enhanced electrochemical performance for lithium-ion batteries, *RSC Adv.*, 2015, **5**, 42875.
- **4.** Liu L, Sun L, Liu J, Xiao X, Hu Z, Cao X, Wang B and Liu X, Enhancing the electrochemical properties of NiFe₂O₄ anode for lithium ion battery through a simple hydrogenation modification, *Intl. J. Hydrogen Energy*, 2014, **39**, 11258.
- Wang N, Xu H, Chen L, Gu X, Yang J, Qian Y, A general approach for MFe₂O₄ (M ¹/₄ Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries, *J. Power Sources*, 2014, **247**, 163.
- **6.** Penga S, Lia L, Srinivasan M, Electrospun CuFe₂O₄ nanotubes as anodes for highperformance lithium-ion batteries, *J. Energy Chemistry*, 2014, **23**, 301.
- Ding Y, Yang Y and Shao H, Synthesis and characterization of nanostructured CuFe₂O₄ anode material for lithium ion battery, *Solid State Ionics*, 2012, 217 27.
- Li X D, Yang W S, Li F, Evans D G, Duan X, Stoichiometric synthesis of pure NiFe₂O₄ spinel from layered double hydroxide precursors for use as the anode material in lithium-ion batteries, *J. Physics Chem. Solids*, 2006, 67, 1286.
- **9.** NuLi Y N, Qin Q Z, Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries, *J. Power Sources*, 2005, **142**, 292.
- 10. Dong Y, Cao C, Chui Y S and Zapien J A, Facile hydrothermal synthesis of CuFeO₂ hexagonal platelets/rings and graphene composites as anode materials for lithium ion batteries, *Chem. Commun.*, 2014, **50**, 10151.