Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Water soluble ratiometric fluorescent probe to mitochondrial targeted SO₂ based

on conjugated biquinolines

Jialu Yang^a, Caixia Yin, ^{a,*} Kaiqing Ma, ^aYongkang Yue, ^a Fangjun Huo^{b,}

^a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China; ^b Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China. *E-mail: <u>yincx@sxu.edu.cn</u>; <u>huofj@sxu.edu.cn</u>.

Contents:

I: Material and Methods

II: Figure S1: The ¹H NMR (600 MHz) Spectrum of Probe in DMSO- d_6 .

Figure S2: The ¹³C NMR (151 MHz) Spectrum of Probe in DMSO-d₆

Figure S3: The HR-MS of the Probe.

Figure S4: The HR-MS of the reaction mechanism

Figure S5: UV-Vis absorption spectrum and fluorescence emission spectra (10 µM)

of Probe under LED in PBS for 40 minutes.

Figure S6: Competition response of Probe (10 µM) in the presence of various other

biologically relevant species (5 mM) and other anions (5 mM) at I 445/570.

Figure S7: Fluorescence intensity curves of **Probe** (10 μ M) in the presence or absence of NaHSO₃ (200 μ M), GSH, Cys and Hcy, and H₂S (10 mM) in the presence or absence of NaHSO₃ (200 μ M) in PBS buffer (pH=7.4).

Figure S8: Fluorescence spectra of free **Probe** and **Probe** after addition of NaHSO₃ under different pH conditions.

Figure S9: Cell viability estimated by CCK-8 assay with Hela cells, which were cultured in the presence of $0-50 \mu$ M **Probe** for 5 and 10 h.

Table 1: The water solubility comparison chart of the Probe and other probes.

I: Material and Methods

1.1 Materials and Physical measurements

All chemical reagents and solvents were obtained from commercial suppliers, such as Aladdin Industries (Shanghai, China), Shanghai Experimental Reagent Co., Ltd. (Shanghai, China), Beyotime Co., Ltd. (Shanghai, China). Among them, 6-methoxy-2-methylquinoline and 1.4-dioxane were purchased from Aladdin Industries (Shanghai, China). Mitochondrial red, CCK-8 and cell culture reagents were purchased from Beyotime Co., Ltd (Shanghai, China). The fluorescence spectrum was measured using a Hitachi F-7000 fluorescence spectrophotometer. The ultravioletvisible spectrum was monitored by Hitachi U-3900 ultraviolet-visible spectrophotometer. ¹H NMR and ¹³C NMR data were performed with BRUKER AVANCE III HD 600 MHz and 151 MHz NMR spectrometers (Bruker, Billerica, MA). The HR-MS measurement was performed on the AB SCIEX Tripple TOF5600 instrument. Zeiss LSM880 confocal laser scanning microscope was used to evaluate the probe's ability to respond in living cells. PerkinElmer IVIS Lumina LT III living imaging instrument was used for evaluating the imaging of Probe in living cells and mice.

1.3. Synthesis of Probe

Compound 1: 6-methoxy-2-methylquinoline (346 mg, 2 mmol) and SeO₂ (0.45 g, 4 mmol) were dissolved in 1.4-dioxane at 80 °C for 4 hours. TLC spot check. The solvent was removed under reduced pressure to obtain a light pink solid. (EA: PE = 1:3).

Probe: The Compound 1 (0.55 g, 2.6 mmol) was added dropwise to a solution of 6-

methoxy-1,2-dimethylquinolin-1-ium (0.64 g, 3.5 mmol) dissolved in ethanol, and 110 ul of piperidine was added. The mixture was heated to 90 °C, refluxed, and protected with N₂. TLC spot check. After the reaction, the solvent was removed under reduced pressure. The product was purified by column chromatography to obtain a light yellow solid product 0.25 g, 45%, (CH₂Cl₂ :CH₃OH = 20:1).

1.4. Imaging Experiments

Hela cells were cultured in humidified air containing 5% CO₂ at 37 °C in DMEM medium supplemented with 10% fetal bovine serum (additional 100 µg/mL streptomycin and 100 u/mL penicillin). The cells were washed 3 times with PBS (pH = 7.4) and then incubated with 10 µM **Probe** in pure PBS (pH = 7.4) for 20 min. After washing three times, the cells were CLSM imaged with a Zeiss LSM-880 microscope. The yellow channel was set to 570 ± 30 nm ($\lambda_{ex} = 488$ nm), and the blue channel was set to 445 ± 30 nm ($\lambda_{ex} = 405$ nm). In the mitochondrial localization experiment, we set the parameters: $\lambda_{ex} = 488$ nm, $\lambda_{ex} = 490-550$ nm. For the endogenous group, the loaded **Probe** cells were pre-incubated with Cys (150 µM) for 0.5 h.

1.3. Living mice imaging.

All animal experiments were conducted in accordance with the procedures approved by the Radiation Protection Research Institute of China Drug Safety Evaluation Center (production license: SYXK (Jin) 2018-0005). Balb/c type mice (12-14 weeks, male) were purchased from Beijing Life River Experimental Animal Technology Co., Ltd. The experiment was conducted according to the guidelines for the care and use of laboratory animals of the National Institutes of Health. During the experiment, the mice was under general anesthesia. The fluorescence image is recorded in the PerkinElmer IVIS Lumina LTIII real-time imager.

Figure S1. The ¹H NMR (600 MHz) Spectrum of Probe in DMSO-d₆

Figure S2. The ¹³C NMR (151 MHz) Spectrum of Probe in DMSO-d₆

Figure S3: The HR-MS spectrum of the Probe.

Figure S4: The HR-MS of the reaction mechanism.

Probe+NaHSO₃: HR-MS m/z: Calcd for $[C_{23}H_{22}N_2NaO_5S^+]$:461.11416;found: m/z: 461.11359.

Figure S5: UV-Vis absorption spectrum and fluorescence emission spectra (10 μ M) of Probe under LED in PBS within 40 min.

Figure S6: Fluorescence competition of Probe (10 µM) in response to various other biologically relevant species (5 mM) at I 445/570. (a) 1.NaHSO3, 2.H2S + NaHSO3, 3.L-Threonine + NaHSO₃, 4.L-Methionine + NaHSO₃, 5.L-Proline + NaHSO₃, 6.L-Aspartic acid + NaHSO₃, 7.L-Valine + NaHSO₃, 8.trans-4-Hydroxy-L-proline + NaHSO₃, 9.L-Asparagine + NaHSO₃, 10.L-Glutamic acid + NaHSO₃, 11.Lphenylalanine + NaHSO₃, 12.L-Arginine + NaHSO₃, 13.L-Isoleucine + NaHSO₃, 14.Cys + NaHSO₃, 15.GSH + NaHSO₃, 16.Hcy + NaHSO₃, 17.L-Leucine + NaHSO₃.(b) Competition response of Probe (10 µM) in the presence of various other anions (5 mM) at I 445/570. 1.NaHSO3, 2.NaHSO3+CH3COO⁻, 3. NaHSO3+Cl⁻, 4. NaHSO₃+CO₃²⁻, 5.NaHSO₃+F⁻, 6.NaHSO₃+H₂PO₄-, 7.NaHSO₃+ClO⁻, 8. NaHSO₃+HCO₃⁻, 9. NaHSO₃+HPO₄²⁻, 10. NaHSO₃+SO₄²⁻ 11. NaHSO₃+Br⁻, 12. NaHSO₃+NO₂-, 13. NaHSO₃+SCN-, 14. NaHSO₃+S₂O₃²⁻, 15. NaHSO₃+H₂O₂, All data were obtained after 3 minutes.

Figure S7: Fluorescence intensity curves of **Probe** (10 μ M) in the presence or absence of NaHSO₃ (200 μ M), GSH, Cys and Hcy, and H₂S (10 mM) in the presence or absence of NaHSO₃ (200 μ M) in PBS buffer (pH 7.4).

Figure S8. Fluorescence spectra of free **Probe** and **Probe** (10 μ M) after addition of NaHSO₃ (120 μ M) under different pH conditions.

Figure S9: Cell viability estimated by CCK-8 assay with Hela cells, which were cultured in the presence of $0-50 \mu M$ **Probe** for 5 and 10 h.

Probe	Structure	Reaction system	Referenc e
Probe 1		PBS (contain 15% EtOH)	Ref (1)
Probe 2	NC CN NC CN NC CN	PBS: EtOH = 5:5	Ref (2)
Probe 3	Br N® Br Br	PBS: DMSO= 1:1	Ref (3)
Probe 4		PBS: DMSO= 1:1	Ref (4)
This Probe	H ₃ CO	PBS	This work

Table 1: The water solubility comparison chart of the **Probe** and other probes.

References

[1] W. Xu ,C.L. Teoh, J.J. Peng, D.D. Su, L. Yuan and Y.T. Chang, Biomaterials,

2015 56 1-9.

[2] M.F. Huang, L.N. Chen, J.Y. Ning, W.L. Wu, X.D. He, J.Y. Miao and B.X. Zhao, *Sens. Actuators B Chem.*, 2018 **261** 196-202.

[3] H.D. Li, J.L. Fan, S. Long, J.J. Du, J.Y. Wang and X.J. Peng, *Sens. Actuators B Chem.*, 2018 **273** 899-905.

[4] S.H. Han, X.X. Yue, J.P. Wang, Y. Zhang, B.H. Wang and X.Z. Song, *New J. Chem.*, 2020 **44** 4554-4557.