Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Synthesis, spectroscopic characterization and DNA/HSA binding study of (phenyl/naphthyl)ethenyl-substituted 1,3,4-oxadiazolyl-1,2,4oxadiazoles

João C. P. Mayer,^a Thiago V. Acunha,^b Oscar E. D. Rodrigues,^a Davi F. Back,^c Otávio Augusto Chaves,^d Luciano Dornelles^{a*} and Bernardo A. Iglesias^{b**}

^a Departamento de Química, LabSelen-NanoBio, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil.

^b Departamento de Química, Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil.

^c Laboratório de Materiais Inorgânicos - Departamento de Química, CCNE, UFSM, Santa Maria – RS, Brazil, Zip Code 97105-900.

^d Instituto SENAI de Inovação em Química Verde, Rua Morais e Silva N° 53, Bloco 09, CEP 20271030, Rio de Janeiro, RJ, Brazil.

Table of Contents

¹ H and ¹³ C NMR spectra of compounds 7aa-be	. S2
HRMS spectra of compounds 7aa-be	S12
X-Ray data of Compound 7aa	S22
UV-Vis absorption analysis of 7aa-ae and 7ba-be	S25
Steady-state emission fluorescence analysis of 7aa-ae and 7ba-be	S27
UV-Vis titration absorption spectra of 7ab-ae and 7bb-be with CT-DNA	S29
Competitive emission spectra of EB-DNA with derivative 7ab-ae and 7bb-be	S33
HSA-binding emission spectra with derivative 7ab-ae and 7bb-be	S38

¹H and ¹³C NMR spectra of compounds 7aa-be.

Figure S1. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7aa.

Figure S2. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7aa.

Figure S3. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7ab.

Figure S4. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7ab.

Figure S5. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7ac (δ , TMS).

Figure S6. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7ac.

Figure S7. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7ad.

Figure S8. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7ad.

Figure S9. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7ae.

Figure S10. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7ae.

Figure S11. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7ba.

Figure S12. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7ba.

Figure S13. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7bb.

Figure S14. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7bb.

Figure S15. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7bc.

Figure S16. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7bc.

Figure S17. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7bd.

Figure S18. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7bd.

Figure S19. ¹H NMR spectrum (CDCl₃ at 400 MHz) of compound 7be.

Figure S20. ¹³C NMR spectrum (CDCl₃ at 100 MHz) of compound 7be.

HRMS Spectra of compounds 7aa-be

Figure S21. HRMS Spectrum of compound 7aa (ESI+).

Figure S22. HRMS Spectrum of compound 7ab (ESI+).

Figure S23. HRMS Spectrum of compound 7ac (ESI+).

Figure S24. HRMS Spectrum of compound 7ad (ESI+).

Figure S25. HRMS Spectrum of compound 7ae (ESI+).

Figure S26. HRMS Spectrum of compound 7ba (ESI+).

Figure S27. HRMS Spectrum of compound 7bb (ESI+).

Figure S28. HRMS Spectrum of compound 7bc (ESI+).

Figure S29. HRMS Spectrum of compound 7bd (ESI+).

Figure S30. HRMS Spectrum of compound 7be (ESI+).

Compound	7aa	
Empirical formula	$C_{18}H_{12}N_4O_2$	
Formula weight	316.32	
Temperature (K)	100(2)	
Wavelength	0.71073	
Crystal system	Monoclinic	
Space group	<i>P</i> 2 ₁ / <i>c</i>	
<i>a</i> (Å)	15.8581(13)	
b (Å)	4.2689(3)	
<i>c</i> (Å)	22.0230(18)	
α (°)	90	
β (°)	94.541(3)	
γ (°)	90	
Volume (Å ³)	1486.2(2)	
Z	4	
Calculated density(mg·m ⁻³)	1.414	
Absorp. coefficient (mm ⁻¹)	0.096	
F (000)	656	
Crystal size (mm)	0.373 x 0.104 x 0.080	
Theta range for data collection (°)	2.34 to 27.13	
Limiting indices	$-20 \le h \le 205 \le k \le 528 \le l \le 28$	
Reflections collected / unique	12694 /3290	
Completeness to theta	99.8%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. trans.	0.8620/0.6741	
Data / restraints / parameters	3290 / 0 / 217	
Goodness-of-fit on F^2	1.015	
ÍndiceR _{int}	0.0768	
Final R indices R_1 and $wR_2[I > 2\sigma(l)]$	0.0572 /0.01129	
<i>R</i> indices (all data)	0.01129 / 0.01344	
Largest diff. peak and hole	0.243 and -0.333 e·A ⁻³	

 Table S1. Crystal data and details of the refinement of the crystal structure of 7aa.

O(12)-C(13)	1 364(2)	
O(12)-C(15)	1.304(2)	
O(12)- $C(10)$	1.3/4(2) 1.346(2)	
O(1) - C(3)	1.340(2)	
O(1)-N(2) N(15) $O(16)$	1.413(2)	
N(15)-C(10) N(15) N(14)	1.302(3)	
N(13)-N(14) N(14) C(12)	1.402(2)	
N(14)-C(13)	1.260(3)	
$\frac{N(2)-C(3)}{N(4)-C(5)}$	1.310(3)	
$\frac{N(4)-C(3)}{N(4)-C(2)}$	1.290(3)	
N(4)-C(5)	1.392(2)	
$\frac{C(13)-C(5)}{C(11)}$	1.444(3)	
$\frac{C(6)-C(11)}{C(6)-C(7)}$	1.384(3)	
$\frac{C(6)-C(7)}{C(6)-C(7)}$	1.402(3)	
$\frac{C(6)-C(3)}{C(10)-C(20)}$	1.460(3)	
C(19)-C(20)	1.388(3)	
C(19)-C(24)	1.397(3)	
C(19)-C(18)	1.472(3)	
C(17)-C(18)	1.339(3)	
C(17)-C(16)	1.437(3)	
<u>C(8)-C(9)</u>	1.378(3)	
<u>C(8)-C(7)</u>	1.382(3)	
C(10)-C(11)	1.384(3)	
C(10)-C(9)	1.392(3)	
C(20)-C(21)	1.389(3)	
C(21)-C(22)	1.375(4)	
C(22)-C(23)	1.382(4)	
C(24)-C(23)	1.382(3)	
C(13)-O(12)-C(16)	101.45(16)	
C(5)-O(1)-N(2)	104.81(16)	
C(16)-N(15)-N(14)	106.42(18)	
C(13)-N(14)-N(15)	105.77(17)	
C(3)-N(2)-O(1)	104.41(16)	
C(5)-N(4)-C(3)	101.83(17)	
N(14)-C(13)-O(12)	113.99(18)	
N(14)-C(13)-C(5)	126.46(19)	
O(12)-C(13)-C(5)	119.49(19)	
C(11)-C(6)-C(7)	119.6(2)	
C(11)-C(6)-C(3)	121.18(18)	
C(7)-C(6)-C(3)	119.2(2)	
C(20)-C(19)-C(24)	118.7(2)	
C(20)-C(19)-C(18)	118.7(2)	
C(24)-C(19)-C(18)	122.6(2)	
N(4)-C(5)-O(1)	115.14(18)	
N(4)-C(5)-C(13)	129.97(19)	
O(1)-C(5)-C(13)	114.87(19)	
C(18)-C(17)-C(16)	124.0(2)	

 Table S2.
 Bond lengths [A] and angles [deg] for 7aa.

C(17)-C(18)-C(19)	125.4(2)
N(2)-C(3)-N(4)	113.8(2)
N(2)-C(3)-C(6)	121.88(18)
N(4)-C(3)-C(6)	124.29(19)
N(15)-C(16)-O(12)	112.36(17)
N(15)-C(16)-C(17)	126.9(2)
O(12)-C(16)-C(17)	120.75(19)
C(9)-C(8)-C(7)	119.98(19)
C(8)-C(7)-C(6)	120.1(2)
C(11)-C(10)-C(9)	120.0(2)
C(19)-C(20)-C(21)	121.1(2)
C(8)-C(9)-C(10)	120.3(2)
C(10)-C(11)-C(6)	120.09(18)
C(22)-C(21)-C(20)	119.6(2)
C(21)-C(22)-C(23)	120.1(2)
C(23)-C(24)-C(19)	120.0(2)
C(22)-C(23)-C(24)	120.6(2)

Figure S31. Projection of the molecular structure of the **7aa** ligand. Thermal ellipsoids with 50% probability level.

Figure S32. UV-Vis absorption spectra of derivatives 7ba-be in CHCl₃ solution ([] = $2.00 \times 10^{-5} \text{ M}$).

Figure S33. UV-Vis absorption spectra of derivatives (a) 7aa-ae and (b) 7ba-be in DMSO solution ([] = 2.00×10^{-5} M).

Figure S34. Steady-state emission spectra of derivatives 7aa-ae ($\lambda_{exc} = 323$ nm) in saturated argon chloroform solution ([] = 1.00 x 10⁻⁶ M).

Figure S35. Steady-state emission spectra of derivatives (a) **7aa-ae** ($\lambda_{exc} = 324$ nm) and (b) **7ba-be** ($\lambda_{exc} = 355$ nm) in saturated argon DMSO solution ([] = 1.00 x 10⁻⁶ M).

Figure S36. Representative samples of compound **7aa** at 1.0 mg/mL (1.05 x 10^{-3} M) solution in DMSO (**A**), and compound **7ba** at 1.0 mg/mL (9.10 x 10^{-4} M) solution in DMSO (**B**), both under UV illumination (365 nm).

Figure S37. UV-Vis titration absorption spectra of derivative **7ab**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) *versus* [DNA].

Figure S38. UV-Vis titration absorption spectra of derivative **7ac**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) versus [DNA].

Figure S39. UV-Vis titration absorption spectra of derivative **7ad**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) versus [DNA].

Figure S40. UV-Vis titration absorption spectra of derivative **7ae**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) versus [DNA].

Figure S41. UV-Vis titration absorption spectra of derivative **7bb**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) versus [DNA].

Figure S42. UV-Vis titration absorption spectra of derivative **7bc**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) versus [DNA].

Figure S43. UV-Vis titration absorption spectra of derivative **7bd**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) *versus* [DNA].

Figure S44. UV-Vis titration absorption spectra of derivative **7be**, in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of CT-DNA ranged from 0 to 100 μ M. Insert graph shows the plot of [DNA]/($\epsilon_a - \epsilon_f$) versus [DNA].

Figure S45. Competitive emission spectra of EB-DNA with derivative **7aa** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S46. Competitive emission spectra of EB-DNA with derivative **7ab** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S47. Competitive emission spectra of EB-DNA with derivative **7ac** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S48. Competitive emission spectra of EB-DNA with derivative **7ad** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S49. Competitive emission spectra of EB-DNA with derivative **7ae** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S50. Competitive emission spectra of EB-DNA with derivative **7ba** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S51. Competitive emission spectra of EB-DNA with derivative **7bb** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S52. Competitive emission spectra of EB-DNA with derivative **7bc** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S53. Competitive emission spectra of EB-DNA with derivative **7bd** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S54. Competitive emission spectra of EB-DNA with derivative **7be** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. Insert graph shows the plot of F₀/F *versus* [compound].

Figure S55. HSA-binding emission spectra with derivative **7aa** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S56. HSA-binding emission spectra with derivative **7ab** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S57. HSA-binding emission spectra with derivative **7ac** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S58. HSA-binding emission spectra with derivative **7ad** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S59. HSA-binding emission spectra with derivative **7ae** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S60. HSA-binding emission spectra with derivative **7bb** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S61. HSA-binding emission spectra with derivative **7bc** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S62. HSA-binding emission spectra with derivative **7bd** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Figure S63. HSA-binding emission spectra with derivative **7be** in a DMSO (2%)/Tris-HCl buffer (pH 7.2) solution. The concentration of compound ranged from 0 to 100 μ M. *Insert graph* shows the plot of F₀/F *versus* [compound].

Compound	Nucleobase	Interaction	Distance (Å)
	DG-04	Van der Waals	2.30
	DA-05	Van der Waals	2.10
	DA-06	Van der Waals	2.70
	DT-07	Van der Waals	2.40
7aa-ac, ae	DT-08	Van der Waals	2.30
	DA-17	Van der Waals	2.80
	DA-18	Van der Waals	1.70
	DT-19	Van der Waals	2.90
	DT-20	Van der Waals	3.30
	DC-21	Van der Waals	3.40
	DA-06	Van der Waals	2.00
	DT-07	Van der Waals	2.70
	DT-08	Van der Waals	2.40
7ad	DA-18	Van der Waals	2.50
	DT-19	Van der Waals	2.40
	DT-20	Van der Waals	3.00
	DA-05	Van der Waals	3.40
	DA-06	Van der Waals	2.20
	DT-07	Van der Waals	2.40
	DT-08	Van der Waals	2.30
7ba, bc	DC-09	Van der Waals	2.50
	DG-16	Van der Waals	2.80
	DA-17	Van der Waals	2.80
	DA-18	Van der Waals	2.70
	DT-19	Van der Waals	3.00
	DT-20	Van der Waals	2.50
	DA-06	Van der Waals	3.10
	DT-07	Van der Waals	2.60
	DC-09	Van der Waals	2.50
7bb	DG-16	Van der Waals	1.70
	DA-17	Van der Waals	3.00
	DA-18	Van der Waals	3.40
	DT-19	Van der Waals	2.50
	DC-03	Van der Waals	3.10
	DG-04	Van der Waals	2.10
	DA-05	Van der Waals	2.60
	DA-06	Van der Waals	1.50
	DT-07	Van der Waals	2.30
7bd, be	DT-08	Van der Waals	3.00
	DA-18	Van der Waals	2.50
	DT-19	Van der Waals	2.80

Table S3. The main nucleobases and interactions involved in the association DNA:**7aaae** and DNA:**7ba-be** in the minor groove.

	DT-20	Van der Waals	2.90
	DC-21	Van der Waals	3.60
	DG-22	Van der Waals	2.00
	DA-06	Van der Waals	3.60
	DT-07	Van der Waals	2.00
EB	DT-08	Hydrogen	2.90
		bonding	
	DA-17	Van der Waals	3.60
	DA-18	Van der Waals	1.40
	DT-19	Van der Waals	2.40

Table S4. The main amino acid residues and interactions involved in the association HSA:**7aa-ae** and HSA:**7ba-be** in the site II (subdomain IIIA).

Compound	Amino acid residue	Interaction	Distance (Å)
	Ile-388	Van der Waals	1.30
	Tyr-411	Hydrogen bonding	2.10
	Lys-414	Van der Waals	2.80
	Val-415	Van der Waals	2.30
	Val-433	Van der Waals	3.30
7aa-ac	Cys-437	Van der Waals	2.50
	Leu-453	Van der Waals	2.40
	Leu-457	Van der Waals	3.00
	Leu-460	Van der Waals	2.80
	Phe-488	Van der Waals	3.60
	Ser-489	Hydrogen bonding	1.90
	Ile-388	Van der Waals	1.50
	Tyr-411	Hydrogen bonding	2.10
	Leu-430	Van der Waals	2.10
7ad/ae	Val-433	Van der Waals	2.80
	Cys-437	Van der Waals	2.10
	Leu-460	Van der Waals	2.50
	Phe-488	Van der Waals	3.60
	Ser-489	Van der Waals	2.00
	Leu-387	Van der Waals	2.90
	Ile-388	Van der Waals	1.30
	Tyr-411	Hydrogen bonding	2.10
	Val-415	Van der Waals	1.90
7ba-be	Val-418	Van der Waals	1.30
	Val-426	Van der Waals	1.30
	Leu-430	Van der Waals	2.10
	Val-433	Van der Waals	1.70
	Gly-434	Van der Waals	1.90
	Arg-485	Hydrogen bonding	2.70

Phe-488 Van der Waals 2.30