Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

One-dimensional polymeric iodoplumbate hybrids with lanthanide complex cations: syntheses, crystal structures, photoelectric and photocatalytic properties

Niannian Chen,^[a] Yan Gao,^[a] Yiming Tian,^[a] Bing Wu,^[a] Dingxian Jia^{[a],*}, Shengxian Zhao^{[b],*}

^[a]College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

^[b]College of Science and Technology, Ningbo University, Cixi 315302, China.

Table of Contents

1. Table S1. Crystallographic data and refinement of 1–3 .	S2
2. Table S2. Selected Bond Lengths (Å) and Angles (deg) for 1	S2
3. Table S3. Selected Bond Lengths (Å) and Angles (deg) for 2	S4
4. Table S4. Selected Bond Lengths (Å) and Angles (deg) for 3	S6
5. Table S5. Hydrogen Bond Lengths (Å) and Angles (deg) for 1-3	S8
6. Fig. S1 (a) Crystal structure of the $[La(DMF)_8]^{3+}$ with the labelling scheme in 1. (b) Th	e dicapped
trigonal prism LaO_8 of in the $[La(DMF)_8]^{3+}$ complex cation.	S9
7. Fig. S2. (a) Crystal structure of the 1-D $[Pb_3I_9]_n^{3n-}$ chain in 1 viewed along the <i>b</i> (a) an S10	d <i>a</i> (b) axis.
8. Fig. S3. (a) Crystal structure of the $[Sm(DMF)_8]^{3+}$ with the labelling scheme in 2. (b) T	he dicapped
trigonal prism SmO_8 of in the $[Sm(DMF)_8]^{3+}$ complex cation.	S10
9. Fig. S4. Packing diagram of 2 viewed along the c axis. Yellow octahedron: Pbl_6 .	S10
10. Fig. S5. The photocurrent response behaviours of 1 (a), 2 (b) and 3 (c).	S11
11. Fig. S6. Time dependent absorption spectra of CV solution with photodegradation ca	atalyzed by
compounds 1 (a), 2 (b), 3 (c) and Pbl ₂ (d).	S12
12. Fig. S7. The linear relationship of $\ln(C_0/C)$ via reaction time over compounds $1(a)$, 2	(b), 3 (c).
	S12
13. Fig. S8. Time dependent absorption spectra of CV solution with photodegradation ca	atalyzed by
compound 2 in the presence of BQ (a), AO (b), and TBA (c).	S13
14. Fig. S9. The linear relationship of $\ln(C_0/C)$ over reaction time over compounds '	1, 2 and 3 in the
photodegradation of MB.	S13
15 Fig. S10. Propsoed reaction mechanism for photocatalytic degradation of CV over ca	atalyst 2 under
visible light irradiation.	S14
16. Fig. S11. Simulated and experimental powder XRD patterns of compounds 1 (a), an	d 2 (b).
	S15.

17. Fig. S12. Propsoed reaction mechanism for photocatalytic degradation of CV over catalyst **2** under visible light irradiation. S15.

18. Fig. S13. IR spectrum of complex 1.	S16
19. Fig. S14. IR spectrum of complex 2.	S16
20. Fig. S14. IR spectrum of complex 3.	S16
21. Fig. S16. TGA curves of compounds 1 (left), and 2 (right).	S17

	1	2	3
Empirical formula	$C_{24}H_{56}N_8O_8LaPb_3I_9$	$C_{24}H_{56}N_8O_8SmPb_5I_{13}$	$C_{24}H_{56}N_8O_8GdPb_5I_{13}$
FW	2487.34	3420.76	3427.66
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/n$	$P2_1/n$
<i>a</i> [Å]	19.497(4)	18.833(4)	18.777(4)
<i>b</i> [Å]	17.505(4)	20.148(4)	20.133(4)
<i>c</i> [Å]	17.664(4)	20.148(4)	20.095(4)
α [°]	90	90	90
γ [°]	97.67(3)	110.01(3)	109.89(3)
β [°]	90	90	90
V[Å ³]	5975(2)	7183(3)	7143(3)
Ζ	4	4	4
<i>T</i> [K]	293(2)	293(2)	293(2)
$D_c/Mg m^{-3}$	2.765	3.163	3.187
<i>F</i> (000)	4400	5924	5932
2θ (max) [°]	50.70	50.70	50.70
Measured reflns	26521	31821	67875
Unique reflns	7277	8745	9452
Rint	0.0869	0.1185	0.1526
No. of parameters	393	432	455
$\mathbf{R}_1\left[I > 2\sigma(I)\right]$	0.0896	0.1154	0.1211
wR ₂ (all data)	0.1613	0.2272	0.2357
GOF on F^2	1.158	1.185	1.282

Table S1. Crystallographic data and refinement of 1–3.

Table S2 . Selected Bond Lengths (A) and Angles (deg) for	Table S2.	Selected Bond	Lengths (Å) and Angles	(deg) for 1
--	-----------	---------------	------------	--------------	-------------

			•/
Pb(1)–I(1)	3.3045(16)	Pb(1)–I(2)	3.260(2)
Pb(1)–I(3)	3.031(2)	Pb(1)–I(4)	3.1488(17)
Pb(1)–I(5)	3.2717(19)	Pb(1)–I(9)	3.487(2)
Pb(2)–I(1)	3.615(2)	Pb(2)–I(6)	3.2478(18)
Pb(2)–I(2)	3.2253(19)	Pb(2)–I(8)	3.016(2)
Pb(2)–I(7)	3.2041(17)	Pb(2)–I(9)#2	3.2719(16)
Pb(3)–I(4)#1	3.2190(17)	Pb(3)–I(1)	3.2098(18)
Pb(3)–I(6)	3.250(2)	Pb(3)–I(5)#1	3.189(2)

Pb(3)–I(9)	3.2182(17)	Pb(3)–I(7)	3.2817(17)
La(1)–O(2)	2.463(14)	La(1)-O(1)	2.514(16)
La(1)–O(4)	2.520(2)	La(1)–O(3)	2.442(17)
La(1)–O(6)	2.450(14)	La(1)–O(5)	2.505(14)
La(1)–O(8)	2.485(19)	La(1)–O(7)	2.483(16)
I(1)-Pb(1)-I(2)	86.81(4)	I(1)–Pb(1)–I(3)	98.19(6)
I(1)–Pb(1)–I(4)	168.46(5)	I(1)–Pb(1)–I(5)	92.14(4)
I(2)–Pb(1)–I(3)	93.10(6)	I(2)–Pb(1)–I(4)	92.06(5)
I(2)–Pb(1)–I(5)	164.38(5)	I(3)-Pb(1)-I(4)	93.34(6)
I(3)–Pb(1)–I(5)	102.46(6)	I(4)–Pb(1)–I(5)	85.85(4)
I(1)–Pb(2)–I(2)	82.31(5)	I(1)-Pb(2)-I(6)	84.14(4)
I(1)–Pb(2)–I(7)	82.99(5)	I(1)-Pb(2)-I(8)	175.85(5)
I(1)–Pb(2)–I(9)#2	84.70(5)	I(2)–Pb(2)–I(6)	166.45(6)
I(2)–Pb(2)–I(7)	93.44(5)	I(2)–Pb(2)–I(8)	93.97(6)
I(2)–Pb(2)–I(9)#2	87.05(5)	I(6)–Pb(2)–I(7)	85.16(4)
I(6)–Pb(2)–I(8)	99.56(6)	I(6)–Pb(2)–I(9)#2	91.44(4)
I(7)–Pb(2)–I(8)	99.13(6)	I(7)–Pb(2)–I(9)#2	167.50(5)
I(8)–Pb(2)–I(9)#2	93.29(6)	I(1)-Pb(3)-I(4)#1	91.77(4)
I(1)–Pb(3)–I(5)#1	91.44(5)	I(1)-Pb(3)-I(6)	90.98(5)
I(1)–Pb(3)–I(7)	88.47(4)	I(1)-Pb(3)-I(9)	176.90(5)
I(4)#1–Pb(3)–I(5)#1	86.08(5)	I(4)#1–Pb(3)–I(6)	90.95(5)
I(4)#1–Pb(3)–I(7)	174.83(5)	I(4)#1–Pb(3)–I(9)	85.47(4)
I(5)#1–Pb(3)–I(6)	176.22(5)	I(5)#1–Pb(3)–I(7)	99.08(5)
I(5)#1–Pb(3)–I(9)	86.97(5)	I(6)-Pb(3)-I(7)	83.88(5)
I(6)–Pb(3)–I(9)	90.47(5)	I(7)–Pb(3)–I(9)	94.41(4)
Pb(1)–I(1)–Pb(2)	74.67(4)	Pb(1)–I(1)–Pb(3)	147.72(6)
Pb(2)–I(1)–Pb(3)	73.06(4)	Pb(1)–I(2)–Pb(2)	80.81(4)
Pb(1)–I(4)–Pb(3)#2	79.95(4)	Pb(1)–I(5)–Pb(3)#2	78.58(4)
Pb(2)–I(6)–Pb(3)	77.70(4)	Pb(2)–I(7)–Pb(3)	77.86(4)
Pb(2)#1–I(9)–Pb(3)	151.79(6)	O(1)-La(1)-O(2)	71.8(5)
O(1)-La(1)-O(3)	143.9(5)	O(1)-La(1)-O(4)	131.8(7)
O(1)-La(1)-O(5)	124.7(5)	O(1)-La(1)-O(6)	72.0(5)
O(1)-La(1)-O(7)	77.8(6)	O(1)-La(1)-O(8)	76.3(7)
O(2)–La(1)–O(3)	72.2(5)	O(2)–La(1)–O(4)	130.2(6)
O(2)–La(1)–O(5)	133.2(6)	O(2)-La(1)-O(6)	143.0(5)
O(2)–La(1)–O(7)	75.7(5)	O(2)–La(1)–O(8)	73.6(6)
O(3)–La(1)–O(4)	76.2(8)	O(3)–La(1)–O(5)	79.6(5)
O(3)-La(1)-O(6)	144.1(5)	O(3)-La(1)-O(7)	96.3(6)
O(3)–La(1)–O(8)	90.7(8)	O(4)-La(1)-O(5)	75.0(6)
O(4)–La(1)–O(6)	72.4(7)	O(4)-La(1)-O(7)	70.5(6)
O(4)-La(1)-O(8)	144.4(7)	O(5)-La(1)-O(6)	75.8(5)

O(5)-La(1)-O(7)	145.3(5)	O(5)-La(1)-O(8)	70.1(6)
O(6)-La(1)-O(7)	89.4(5)	O(6)-La(1)-O(8)	104.8(7)
O(7)-La(1)-O(8)	144.6(6)	La(1)-O(1)-C(1)	140.7(16)
La(1)-O(2)-C(4A)	148(2)	La(1)-O(2)-C(4B)	145(2)
La(1)-O(3)-C(7)	144.3(19)	La(1)-O(4)-C(10)	136(2)
La(1)-O(5)-C(13)	150.2(16)	La(1)-O(6)-C(16)	134.7(16)
La(1)-O(7)-C(19)	150.5(14)	La(1)-O(8)-C(22A)	149(3)
La(1)-O(8)-C(22B)	128(4)		

Symmetry transformations used to generate equivalent atoms: #1 x, -y+3/2, z-1/2; #2 x, -y+3/2, z+1/2.

 Table S3. Selected Bond Lengths (Å) and Angles (deg) for 2

Pb(1)-I(1)	3.259(3)	Pb(1)-I(2)	3.348(2)
Pb(1)–I(2)#1	3.391(2)	Pb(1)–I(3)	3.160(3)
Pb(1)–I(4)	3.132(3)	Pb(1)–I(5)	3.172(3)
Pb(2)–I(1)	3.205(3)	Pb(2)–I(2)	3.461(3)
Pb(2)–I(3)	3.207(3)	Pb(2)–I(6)	3.320(2)
Pb(2)–I(7)	3.103(3)	Pb(2)–I(8)	3.224(3)
Pb(3)–I(2)	3.310(2)	Pb(3)–I(4)#1	3.231(3)
Pb(3)–I(5)#1	3.202(3)	Pb(3)–I(6)	3.271(2)
Pb(3)–I(9)	3.207(3)	Pb(3)–I(10)	3.121(2)
Pb(4)–I(6)	3.741(3)	Pb(4)–I(9)	3.152(3)
Pb(4)–I(10)	3.187(2)	Pb(4)–I(11)	3.410(3)
Pb(4)–I(12)	2.943(3)	Pb(4)–I(13)#2	3.296(3)
Pb(5)–I(6)	3.385(2)	Pb(5)–I(7)	3.311(3)
Pb(5)–I(8)	3.146(3)	Pb(5)–I(11)	3.246(3)
Pb(5)–I(11)#2	3.346(3)	Pb(5)–I(13)	3.084(3)
Sm(1)–O(1)	2.31(2)	Sm(1)–O(2)	2.38(2)
Sm(1)–O(3)	2.34(2)	Sm(1)–O(4)	2.43(2)
Sm(1)–O(5)	2.377(19)	Sm(1)–O(6)	2.28(2)
Sm(1)–O(7)	2.39(3)	Sm(1)–O(8)	2.36(3)
I(1)–Pb(1)–I(2)	88.65(7)	I(1)-Pb(1)-I(2)#1	92.39(7)
I(1)-Pb(1)-I(3)	85.66(7)	I(1)-Pb(1)-I(4)	94.95(7)
I(1)-Pb(1)-I(5)	174.51(8)	I(2)-Pb(1)-I(2)#1	91.45(6)
I(2)–Pb(1)–I(3)	86.68(7)	I(2)#1–Pb(1)–I(3)	177.32(7)
I(2)–Pb(1)–I(4)	175.94(7)	I(2)#1–Pb(1)–I(4)	86.55(7)
I(2)–Pb(1)–I(5)	87.76(6)	I(2)#1–Pb(1)–I(5)	83.55(7)
I(3)-Pb(1)-I(4)	95.44(8)	I(3)–Pb(1)–I(5)	98.28(7)
I(4)-Pb(1)-I(5)	88.51(7)	I(1)-Pb(2)-I(2)	87.59(6)
I(1)-Pb(2)-I(3)	85.78(7)	I(1)-Pb(2)-I(6)	95.22(7)
I(1)-Pb(2)-I(7)	98.57(7)	I(1)-Pb(2)-I(8)	174.75(8)

I(2)–Pb(2)–I(3)	84.06(7)	I(2)–Pb(2)–I(6)	91.07(6)
I(2)–Pb(2)–I(7)	173.72(7)	I(2)–Pb(2)–I(8)	87.49(7)
I(3)–Pb(2)–I(6)	174.98(7)	I(3)–Pb(2)–I(7)	97.55(8)
I(3)–Pb(2)–I(8)	95.51(7)	I(6)–Pb(2)–I(7)	87.17(7)
I(6)–Pb(2)–I(8)	83.06(6)	I(7)–Pb(2)–I(8)	86.32(7)
I(2)–Pb(3)–I(4)#1	86.32(7)	I(2)–Pb(3)–I(5)#1	84.40(6)
I(2)–Pb(3)–I(6)	94.69(6)	I(2)–Pb(3)–I(9)	93.49(7)
I(2)–Pb(3)–I(10)	177.36(7)	I(4)#1–Pb(3)–I(5)#1	86.29(7)
I(4)#1–Pb(3)–I(6)	178.94(7)	I(4)#1–Pb(3)–I(9)	92.56(7)
I(4)#1–Pb(3)–I(10)	94.81(7)	I(5)#1–Pb(3)–I(6)	93.48(7)
I(5)#1–Pb(3)–I(9)	177.66(8)	I(5)#1–Pb(3)–I(10)	93.28(7)
I(6)–Pb(3)–I(9)	87.70(7)	I(6)–Pb(3)–I(10)	84.17(6)
I(9)–Pb(3)–I(10)	88.84(7)	I(6)–Pb(4)–I(9)	80.75(7)
I(6)–Pb(4)–I(10)	75.95(6)	I(6)–Pb(4)–I(11)	83.84(6)
I(6)–Pb(4)–I(12)	167.27(8)	I(6)–Pb(4)–I(13)#2	96.17(7)
I(9)–Pb(4)–I(10)	88.65(7)	I(9)–Pb(4)–I(11)	89.57(7)
I(9)–Pb(4)–I(12)	94.54(10)	I(9)–Pb(4)–I(13)#2	175.83(8)
I(10)–Pb(4)–I(11)	159.74(7)	I(10)–Pb(4)–I(12)	92.20(8)
I(10)–Pb(4)–I(13)#2	93.36(7)	I(11)–Pb(4)–I(12)	108.06(8)
I(11)–Pb(4)–I(13)#2	87.29(7)	I(12)–Pb(4)–I(13)#2	89.04(10)
I(6)–Pb(5)–I(7)	82.84(6)	I(6)–Pb(5)–I(8)	83.19(7)
I(6)–Pb(5)–I(11)	92.33(7)	I(6)–Pb(5)–I(11)#2	87.97(6)
I(6)–Pb(5)–I(13)	171.75(8)	I(7)–Pb(5)–I(8)	84.16(7)
I(7)–Pb(5)–I(11)	174.97(7)	I(7)–Pb(5)–I(11)#2	98.12(7)
I(7)–Pb(5)–I(13)	88.99(8)	I(8)–Pb(5)–I(11)	93.90(7)
I(8)–Pb(5)–I(11)#2	170.54(7)	I(8)–Pb(5)–I(13)	97.23(7)
I(11)–Pb(5)–I(11)#2	83.06(7)	I(11)–Pb(5)–I(13)	95.86(8)
I(11)#2–Pb(5)–I(13)	92.00(7)	Pb(1)–I(1)–Pb(2)	76.59(6)
Pb(1)–I(2)–Pb(1)#1	88.55(6)	Pb(1)–I(2)–Pb(2)	72.05(5)
Pb(1)#1–I(2)–Pb(2)	130.71(7)	Pb(1)–I(2)–Pb(3)	130.19(7)
Pb(1)#1–I(2)–Pb(3)	73.09(5)	Pb(2)–I(2)–Pb(3)	85.57(6)
Pb(1)–I(3)–Pb(2)	77.97(6)	Pb(1)–I(4)–Pb(3)#1	77.66(6)
Pb(1)–I(5)–Pb(3)#1	77.53(6)	Pb(2)–I(6)–Pb(3)	88.54(6)
Pb(2)–I(6)–Pb(4)	134.92(7)	Pb(2)–I(6)–Pb(5)	75.26(5)
Pb(3)–I(6)–Pb(4)	71.46(5)	Pb(3)–I(6)–Pb(5)	130.84(7)
Pb(4)–I(6)–Pb(5)	87.80(6)	Pb(2)–I(7)–Pb(5)	79.25(6)
Pb(2)–I(8)–Pb(5)	79.97(6)	Pb(3)–I(9)–Pb(4)	80.59(6)
Pb(3)–I(10)–Pb(4)	81.38(6)	Pb(4)–I(11)–Pb(5)	96.02(7)
Pb(4)–I(11)–Pb(5)#2	87.09(7)	Pb(4)–I(11)–Pb(5)#2	96.93(7)
Pb(4)#2–I(13)–Pb(5)	93.62(7)	O(1)–Sm(1)–O(2)	70.2(8)
O(1)-Sm(1)-O(3)	115.4(10)	O(1)–Sm(1)–O(4)	137.5(8)
O(1)-Sm(1)-O(5)	82.3(9)	O(1)–Sm(1)–O(6)	142.8(9)

O(1)-Sm(1)-O(7)	73.7(10)	O(1)–Sm(1)–O(8)	74.7(10)
O(2)–Sm(1)–O(3)	73.9(8)	O(2)–Sm(1)–O(4)	75.6(8)
O(2)–Sm(1)–O(5)	83.5(8)	O(2)–Sm(1)–O(6)	147.0(8)
O(2)–Sm(1)–O(7)	138.8(9)	O(2)–Sm(1)–O(8)	111.5(10)
O(3)–Sm(1)–O(4)	76.9(9)	O(3)–Sm(1)–O(5)	143.1(9)
O(3)–Sm(1)–O(6)	85.6(9)	O(3)–Sm(1)–O(7)	141.7(8)
O(3)–Sm(1)–O(8)	71.2(10)	O(4)–Sm(1)–O(5)	69.3(8)
O(4)–Sm(1)–O(6)	74.8(8)	O(4)–Sm(1)–O(7)	123.1(10)
O(4)–Sm(1)–O(8)	143.1(10)	O(5)–Sm(1)–O(6)	99.1(8)
O(5)-Sm(1)-O(7)	72.6(8)	O(5)–Sm(1)–O(8)	145.5(10)
O(6)-Sm(1)-O(7)	71.4(9)	O(6)–Sm(1)–O(8)	84.9(9)
O(7)–Sm(1)–O(8)	76.5(10)	Sm(1)-O(1)-C(1)	131(2)
Sm(1)–O(2)–C(4)	136(2)	Sm(1)–O(3)–C(7)	139(2)
Sm(1)-O(4)-C(10)	133(2)	Sm(1)-O(5)-C(13)	136(2)
Sm(1)–O(6)–C(16)	144(3)	Sm(1)–O(7)–C(19)	136(3)
Sm(1)–O(8)–C(22)	140(3)		

Symmetry transformations used to generate equivalent atoms: #1 - x, -y+1, -z; #2 - x, -y+1, -z+1.

Table S4 Selected Bond Lengths (Å)	and Angles (deg) for 3
Table 54. Science Dolla Lenguis (A)	and Angles (deg) for 3

Pb(1)–I(1)#1	3.388(2)	Pb(1)–I(1)	3.341(2)
Pb(1)–I(2)	3.249(3)	Pb(1)–I(3)	3.162(3)
Pb(1)-I(4)	3.132(3)	Pb(1)–I(5)	3.160(3)
Pb(2)–I(1)	3.310(2)	Pb(2)–I(4)#1	3.221(3)
Pb(2)–I(5)#1	3.200(3)	Pb(2)–I(6)	3.266(2)
Pb(2)–I(7)	3.200(3)	Pb(2)–I(8)	3.113(2)
Pb(3)–I(1)	3.453(3)	Pb(3)–I(2)	3.203(3)
Pb(3)–I(3)	3.208(3)	Pb(3)–I(6)	3.313(2)
Pb(3)–I(9)	3.220(3)	Pb(3)–I(10)	3.094(3)
Pb(4)–I(6)	3.385(2)	Pb(4)–I(9)	3.139(3)
Pb(4)–I(10)	3.311(3)	Pb(4)–I(11)	3.239(3)
Pb(4)–I(11)#2	3.333(3)	Pb(4)–I(12)	3.083(3)
Pb(5)–I(6)	3.743(3)	Pb(5)–I(7)	3.139(3)
Pb(5)–I(8)	3.182(3)	Pb(5)–I(11)	3.411(3)
Pb(5)–I(12)#2	3.287(3)	Pb(5)–I(13)	2.946(3)
Gd(1)-O(1)	2.31(2)	Gd(1)-O(2)	2.32(2)
Gd(1)-O(3)	2.44(2)	Gd(1)-O(4)	2.37(2)
Gd(1)-O(5)	2.36(2)	Gd(1)-O(6)	2.30(3)
Gd(1)-O(7)	2.35(3)	Gd(1)-O(8)	2.37(2)
I(1)–Pb(1)–I(1)#1	91.49(6)	I(1)#1-Pb(1)-I(2)	92.28(7)
I(1)-Pb(1)-I(2)	88.87(7)	I(1)-Pb(1)-I(3)	86.79(7)
I(1)#1-Pb(1)-I(3)	177.45(7)	I(1)-Pb(1)-I(4)	175.83(7)

I(1)#1–Pb(1)–I(4)	86.56(7)	I(1)–Pb(1)–I(5)	87.63(7)
I(1)#1–Pb(1)–I(5)	83.72(7)	I(2)–Pb(1)–I(3)	85.82(7)
I(2)–Pb(1)–I(4)	94.89(7)	I(2)–Pb(1)–I(5)	174.60(7)
I(3)–Pb(1)–I(4)	95.28(7)	I(3)–Pb(1)–I(5)	98.08(8)
I(4)-Pb(1)-I(5)	88.50(7)	I(1)–Pb(2)–I(4)#1	86.48(6)
I(1)–Pb(2)–I(5)#1	84.38(6)	I(1)–Pb(2)–I(6)	94.51(6)
I(1)–Pb(2)–I(7)	93.38(7)	I(1)–Pb(2)–I(8)	177.42(7)
I(4)#1–Pb(2)–I(5)#1	86.29(7)	I(4)–Pb(2)–I(6)	178.94(7)
I(4)#1–Pb(2)–I(7)	92.62(7)	I(4)#1–Pb(2)–I(8)	94.68(7)
I(5)#1–Pb(2)–I(6)	93.44(7)	I(5)#1–Pb(2)–I(7)	177.57(8)
I(5)#1–Pb(2)–I(8)	93.38(7)	I(6)–Pb(2)–I(7)	87.69(7)
I(6)–Pb(2)–I(8)	84.32(6)	I(7)–Pb(2)–I(8)	88.88(7)
I(1)–Pb(3)–I(2)	87.68(6)	I(1)-Pb(3)-I(3)	84.22(7)
I(1)–Pb(3)–I(6)	91.06(6)	I(1)–Pb(3)–I(9)	87.49(7)
I(1)–Pb(3)–I(10)	173.65(7)	I(2)-Pb(3)-I(3)	85.84(7)
I(2)–Pb(3)–I(6)	95.17(7)	I(2)–Pb(3)–I(9)	174.87(8)
I(2)–Pb(3)–I(10)	98.56(7)	I(3)–Pb(3)–I(6)	175.13(7)
I(3)–Pb(3)–I(9)	95.39(7)	I(3)–Pb(3)–I(10)	97.30(7)
I(6)–Pb(3)–I(9)	83.19(7)	I(6)–Pb(3)–I(10)	87.27(7)
I(9)–Pb(3)–I(10)	86.23(7)	I(6)–Pb(4)–I(9)	83.25(7)
I(6)–Pb(4)–I(10)	82.69(6)	I(6)–Pb(4)–I(11)	92.47(7)
I(6)–Pb(4)–I(11)#2	87.80(7)	I(6)–Pb(4)–I(12)	171.45(8)
I(9)–Pb(4)–I(10)	83.95(7)	I(9)–Pb(4)–I(11)	93.98(7)
I(9)–Pb(4)–I(11)#2	170.51(7)	I(9)–Pb(4)–I(12)	97.12(7)
I(10)–Pb(4)–I(11)	174.92(7)	I(10)–Pb(4)–I(11)#2	98.09(7)
I(10)–Pb(4)–I(12)	88.84(8)	I(11)–Pb(4)–I(11)#2	83.21(7)
I(11)–Pb(4)–I(12)	96.02(8)	I(11)#2–Pb(4)–I(12)	92.20(7)
I(6)-Pb(5)-I(7)	80.70(7)	I(6)-Pb(5)-I(8)	75.94(6)
I(6)–Pb(5)–I(11)	83.82(6)	I(6)–Pb(5)–I(12)#2	96.13(7)
I(6)–Pb(5)–I(13)	167.15(8)	I(7)–Pb(5)–I(8)	88.75(7)
I(7)–Pb(5)–I(11)	89.47(7)	I(7)–Pb(5)–I(12)#2	175.73(8)
I(7)–Pb(5)–I(13)	94.73(10)	I(8)–Pb(5)–I(11)	159.70(7)
I(8)–Pb(5)–I(12)#2	93.26(7)	I(8)–Pb(5)–I(13)	92.04(8)
I(11)–Pb(5)–I(12)#2	87.34(7)	I(11)–Pb(5)–I(13)	108.26(9)
I(12)#2–Pb(5)–I(13)	88.96(10)	Pb(1)–I(1)–Pb(1)#1	88.52(6)
Pb(1)–I(1)–Pb(2)	130.07(7)	Pb(1)#1–I(1)–Pb(2)	72.95(5)
Pb(1)–I(1)–Pb(3)	71.97(5)	Pb(1)#1–I(1)–Pb(3)	130.59(7)
Pb(2)–I(1)–Pb(3)	85.64(6)	Pb(1)–I(2)–Pb(3)	76.47(6)
Pb(1)–I(3)–Pb(3)	77.63(6)	Pb(1)–I(4)–Pb(2)#1	77.62(6)
Pb(1)–I(5)–Pb(2)#1	77.52(6)	Pb(2)–I(6)–Pb(3)	88.65(6)
Pb(2)–I(6)–Pb(4)	130.72(8)	Pb(2)–I(6)–Pb(5)	71.27(5)
Pb(3)-I(6)-Pb(4)	75.25(5)	Pb(3)-I(6)-Pb(5)	134.79(7)

Pb(4)–I(6)–Pb(5)	87.69(6)	Pb(2)–I(7)–Pb(5)	80.64(7)
Pb(2)–I(8)–Pb(5)	81.33(6)	Pb(3)–I(9)–Pb(4)	80.04(7)
Pb(3)–I(10)–Pb(4)	79.29(6)	Pb(4)–I(11)–Pb(4)#2	96.79(7)
Pb(4)–I(11)–Pb(5)	96.02(7)	Pb(4)#2–I(11)–Pb(5)	86.96(7)
Pb(4)–I(12)–Pb(5)#2	93.49(7)	O(1)-Gd(1)-O(2)	84.6(9)
O(1)-Gd(1)-O(3)	73.6(8)	O(1)-Gd(1)-O(4)	145.5(9)
O(1)-Gd(1)-O(5)	98.2(8)	O(1)-Gd(1)-O(6)	143.4(10)
O(1)-Gd(1)-O(7)	71.4(10)	O(1)-Gd(1)-O(8)	84.9(8)
O(2)–Gd(1)–O(3)	75.4(10)	O(2)–Gd(1)–O(4)	74.3(8)
O(2)–Gd(1)–O(5)	143.3(9)	O(2)–Gd(1)–O(6)	116.9(12)
O(2)–Gd(1)–O(7)	139.9(9)	O(2)–Gd(1)–O(8)	70.7(10)
O(3)–Gd(1)–O(4)	74.9(9)	O(3)-Gd(1)-O(5)	70.5(8)
O(3)–Gd(1)–O(6)	138.0(9)	O(3)-Gd(1)-O(7)	124.4(9)
O(3)–Gd(1)–O(8)	141.2(9)	O(4)-Gd(1)-O(5)	84.0(8)
O(4)–Gd(1)–O(6)	71.1(10)	O(4)-Gd(1)-O(7)	140.3(9)
O(4)–Gd(1)–O(8)	112.3(9)	O(5)-Gd(1)-O(6)	82.0(11)
O(5)–Gd(1)–O(7)	73.5(9)	O(5)-Gd(1)-O(8)	146.0(9)
O(6)-Gd(1)-O(7)	73.7(11)	O(6)-Gd(1)-O(8)	76.1(10)
O(7)–Gd(1)–O(8)	75.5(10)	Gd(1)-O(1)-C(1)	145(3)
Gd(1)-O(2)-C(4)	145(2)	Gd(1)-O(3)-C(7)	134(2)
Gd (1)-O(4)-C(10)	140(3)	Gd(1)-O(5)-C(13)	138(2)
Gd (1)-O(6)-C(16)	133(3)	Gd(1)-O(7)-C(19)	133(3)
Gd (1)-O(8)-C(22A)	142(2)	Gd(1)-O(8)-C(22B)	155(2)

Table S5. Hydrogen Bond Lengths (Å) and Angles (deg) for 1-3

	d(HA)	$d(D\dots \Lambda)$	<(DHA)
D-II A	u(II A)	u(D ^{AA} A)	$\langle DHA \rangle$
1			
C(3)–H(3C)····I(3)#1	3.014	3.917	157.32
C(7)−H(7)····I(4)#2	3.019	3.759	137.67
C(9)−H(9A)····I(9)#3	3.241	3.892	126.72
C(11)–H(11A)····O(6)#4	2.605	3.432	144.55
C(16)−H(16)····O(5)	2.622	3.139	115.69
2			
C(3)−H(3B)····I(13)#1	2.996	3.953	175.51
C(5)−H(5B)····I(6)#2	3.251	4.197	169.02
C(6)–H(6A)…I(12)#3	3.152	4.023	151.67
C(6)-H(6C)····I(10)#2	3.286	4.084	141.90
C(7)−H(7)····I(10)#4	3.212	3.890	131.40
C(9)–H(9A)…I(10)#4	3.086	3.951	150.72
C(9)–H(9B)…I(7)#2	3.219	4.139	161.13
C(14)–H(14B)…I(8)#5	3.219	3.955	134.80
C(15)-H(15B)····I(4)#6	3.289	4.146	149.57

C(16)–H(16)····I(10)#4	3.222	4.004	142.97
C(17)-H(17B)…I(2)#7	3.125	3.840	132.58
C(20)-H(20C)…I(9)#7	3.187	4.020	146.17
C(24)-H(24C)…I(11)#1	2.911	3.722	142.90
3			
C(1)-H(1)····I(8)#1	3.159	3.991	149.93
C(2)–H(2B)····I(1)#2	3.121	3.918	141.57
C(3)−H(3A)····I(7)#1	3.037	3.906	151.32
C(3)–H(3B)····I(3)#2	3.266	4.035	138.41
C(4)–H(4)····I(8)#1	3.298	3.910	125.39
C(6)−H(6A)····I(8)#1	3.206	3.966	137.46
$C(6)-H(7)\cdots O(1)$	2.476	2.984	114.51
C(11)-H(11B)…I(6)#3	3.307	4.235	163.17
C(12)-H(12A)····I(13)#4	3.046	3.938	155.08
C(17)-H(17B)…I(12)#5	3.104	4.033	163.30
C(18)-H(18C)…I(2)#6	3.250	3.831	120.79
C(19)–H(19)····O(5)	2.539	3.007	111.49
C(21)-H(21A)…I(9)#2	3.144	4.081	165.71

Symmetry transformations used to generate equivalent atoms: For **1**: #1–x, –y+1, –z+1; #2 x, y–1, z; #3 x, –y+1/2, z+1/2; #4 x, –y+1/2, z–1/2. For **2**: #1 x+1/2, –y+1/2, z–1/2; #2 –x+1/2, y–1/2, –z+1/2; #3 –x+1, –y+1, –z+1; #4 x+1, y–1, z; #5 x+1, y, z; #6 x+3/2, –y+1/2, z+1/2; #7 –x+3/2, y–1/2, – z+1/2. For **3**: #1 x+1, y –1, z; #2 –x+3/2, y –1/2, –z+1/2; #3 –x+1/2, y –1/2, –z+1/2; #4 –x+1, –y+1, –z+1; #5 x+1/2, –y+1/2, z–1/2; #6 x+1, y, z.

Fig. S1 (a) Crystal structure of the $[La(DMF)_8]^{3+}$ with the labelling scheme in 1. (b) The dicapped trigonal prism LaO_8 of in the $[La(DMF)_8]^{3+}$ complex cation.

Fig. S2 (a) Crystal structure of the 1-D $[Pb_3I_9]_n^{3n-}$ chain in 1 viewed along the *b* (a) and *a* (b) axis.

Fig. S3 (a) Crystal structure of the $[Sm(DMF)_8]^{3+}$ with the labelling scheme in 2. (b) The dicapped trigonal prism SmO_8 of in the $[Sm(DMF)_8]^{3+}$ complex cation.

Fig. S4 Packing diagram of 2 viewed along the c axis. Yellow octahedron: PbI_6 .

Fig. S5. The photocurrent response behaviours of 1 (a), 2 (b) and 3 (c).

Fig. S6. Time dependent absorption spectra of CV solution with photodegradation catalyzed by compounds 1 (a), 2 (b), 3 (c) and PbI_2 (d).

Fig. S7. Time dependent absorption spectra of MB solution with photodegradation catalyzed by compounds 1 (a), 2 (b), and 3 (c).

Fig. S8. The linear relationship of $\ln(C_0/C)$ via reaction time over compounds $\mathbf{1}(a)$, $\mathbf{2}(b)$, $\mathbf{3}(c)$ in the photodegradation of CV.

Fig. S9. The linear relationship of $\ln(C_0/C)$ over reaction time over compounds 1, 2 and 3 in the photodegradation of MB.

Fig. S10. Simulated and experimental powder XRD patterns of compounds 1 (a), and 2 (b).

Fig. S11. Time dependent absorption spectra of CV solution with photodegradation catalyzed by compound **2** in the presence of BQ (a), AO (b), and TBA (c).

Fig. S12. Propsoed reaction mechanism for photocatalytic degradation of CV over catalyst **2** under visible light irradiation.

Fig. S13. IR spectrum of complex 1.

Fig. S14. IR spectrum of complex 2.

Fig. S15. IR spectrum of complex 3.

The thermal properties of the compounds **1** and **2** were investigated by thermogravimetric analysis (TGA), and the test were carried out under nitrogen atmosphere in the temperature from 25°C to 620°C (Fig. S16). Compound **1** displayed a weight loss of about 24.1% in one step between 150°C and 395 °C, which is in good accordance with the theoretical mass loss of 23.5% for the DMF ligands. Compound **2** exhibits a similar thermo decomposition with a weight loss of 18.5% in the temperature range of 140–360 °C, which corresponds the removal of DMF ligands (theoretical value of 17.1%).